![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Relativity physics
Written by the creator of the modern theory of random tensors, this book is the first self-contained introductory text to this rapidly developing theory. Starting from notions familiar to the average researcher or PhD student in mathematical or theoretical physics, the book presents in detail the theory and its applications to physics. The recent detections of the Higgs boson at the LHC and gravitational waves at LIGO mark new milestones in Physics confirming long standing predictions of Quantum Field Theory and General Relativity. These two experimental results only reinforce today the need to find an underlying common framework of the two: the elusive theory of Quantum Gravity. Over the past thirty years, several alternatives have been proposed as theories of Quantum Gravity, chief among them String Theory. While these theories are yet to be tested experimentally, key lessons have already been learned. Whatever the theory of Quantum Gravity may be, it must incorporate random geometry in one form or another. This book introduces a framework for studying random geometries in any dimensions. Building on the resounding success of random matrices as theories of random two dimensional surfaces, random tensors are their natural generalization to theories of random geometry in arbitrary dimension. This book shows that many of the celebrated results in random matrices, most notably 't Hooft's 1/N expansion, can be generalized to higher dimensions. It provides a complete and self-contained derivation of the key results on random tensors.
This comprehensive work thoroughly introduces and reviews the set of results from Belle and BaBar - after more than two decades of independent and complementary work - all the way from the detectors and the analysis tools used, up to the physics results, and the interpretation of these results. The world's two giant B Factory collaborations, Belle at KEK and BaBar at SLAC, have successfully completed their main mission to discover and quantify CP violation in the decays of B mesons. CP violation is a necessary requirement to distinguish unambiguously between matter and antimatter. The shared primary objective of the two B Factory experiments was to determine the shape of the so-called unitarity triangle, an abstract triangle representing interactions of quarks, the elementary constituents of matter. The area of the triangle is a measure of the amount of CP violation associated with the weak force. Many other measurements have been performed by the B Factories and are also discussed in this work.
Expanding on the concept of the authors' previous book "Electroweak Processes in External Electromagnetic Fields," this new book systematically describes the investigation methods for the effects of external active media, both strong electromagnetic fields and hot dense plasma, in quantum processes. Solving the solar neutrino puzzle in a unique experiment conducted with the help of the heavy-water detector at the Sudbery Neutrino Observatory, along with another neutrino experiments, brings to the fore electroweak physics in an active external medium. It is effectively demonstrated that processes of neutrino interactions with active media of astrophysical objects may lead, under some physical conditions, to such interesting effects as neutrino-driven shockwave revival in a supernova explosion, a "cherry stone shooting" mechanism for pulsar natal kick, and a neutrino pulsar. It is also shown how poor estimates of particle dispersion in external active media sometimes lead to confusion. The book will appeal to graduate and post-graduate students of theoretical physics with a prior understanding of Quantum Field Theory (QFT) and the Standard Model of Electroweak Interactions, as well as to specialists in QFT who want to know more about the problems of quantum phenomena in hot dense plasma and external electromagnetic fields.
This book is based upon lectures presented in the summer of 2009 at the INFN-Laboratori Nazionali di Frascati School on Attractor Mechanism, directed by Stefano Bellucci. The symposium included such prestigious lecturers as S. Ferrara, G. Dall'Agata, J.F. Morales, J. Simon and M. Trigiante. All lectures were given at a pedagogical, introductory level, which is reflected in the specific "flavor" of this volume. The book also benefits from extensive discussions about, and the related reworking of, the various contributions. It is the fifth volume in a series of books on the general topics of supersymmetry, supergravity, black holes and the attractor mechanism.
Quantum physics started in the 1920's with wave mechanics and the wave-particle duality. However, the last 20 years have seen a second quantum revolution, centered around non-locality and quantum correlations between measurement outcomes. The associated key property, entanglement, is recognized today as the signature of quantumness. This second revolution opened the possibility of studying quantum correlations without any assumption on the internal functioning of the measurement apparata, the so-called Device-Independent Approach to Quantum Physics. This thesis explores this new approach using the powerful geometrical tool of polytopes. Emphasis is placed on the study of non-locality in the case of three or more parties, where it is shown that a whole new variety of phenomena appear compared to the bipartite case. Genuine multiparty entanglement is also studied for the first time within the device-independent framework. Finally, these tools are used to answer a long-standing open question: could quantum non-locality be explained by influences that propagate from one party to the others faster than light, but that remain hidden so that one cannot use them to communicate faster than light? This would provide a way around Einstein's notion of action at a distance that would be compatible with relativity. However, the answer is shown to be negative, as such influences could not remain hidden.
One of the open challenges in fundamental physics is to combine Einstein's theory of general relativity with the principles of quantum mechancis. In this thesis, the question is raised whether metric quantum gravity could be fundamental in the spirit of Steven Weinberg's seminal asymptotic safety conjecture, and if so, what are the consequences for the physics of small, possibly Planck-size black holes? To address the first question, new techniques are provided which allow, for the first time, a self-consistent study of high-order polynomial actions including up to 34 powers in the Ricci scalar. These novel insights are then exploited to explain quantum gravity effects in black holes, including their horizon and causal structure, conformal scaling, evaporation, and the thermodynamics of quantum space-time. Results indicate upper limits on black hole temperature, and the existence of small black holes based on asymptotic safety for gravity and thermodynamical arguments.
The effective theory of quantum gravity coupled to models of particle physics is being probed by cutting edge experiments in both high energy physics (searches for extra dimensions) and cosmology (testing models of inflation). This thesis derives new bounds that may be placed on these models both theoretically and experimentally. In models of extra dimensions, the internal consistency of the theories at high energies are investigated via perturbative unitarity bounds. Similarly it is shown that recent models of Higgs inflation suffer from a breakdown of perturbative unitarity during the inflationary period. In addition, the thesis uses the latest LHC data to derive the first ever experimental bound on the size of the Higgs boson's non-minimal coupling to gravity.
This thesis provides an introduction to the physics of the Standard Model and beyond, and to the methods used to analyse Large Hadron Collider (LHC) data. The 'hierarchy problem', astrophysical data and experiments on neutrinos indicate that new physics can be expected at the now accessible TeV scale. This work investigates extensions of the Standard Model with gravitons and gravitinos (in the context of supergravity). The production of these particles in association with jets is studied as one of the most promising avenues for researching new physics at the LHC. Advanced simulation techniques and tools, such as algorithms allowing the computation of Feynman graphs and helicity amplitudes are first developed and then employed.
This book, now in its second edition, provides an introductory course on theoretical particle physics with the aim of filling the gap that exists between basic courses of classical and quantum mechanics and advanced courses of (relativistic) quantum mechanics and field theory. After a concise but comprehensive introduction to special relativity, key aspects of relativistic dynamics are covered and some elementary concepts of general relativity introduced. Basics of the theory of groups and Lie algebras are explained, with discussion of the group of rotations and the Lorentz and Poincare groups. In addition, a concise account of representation theory and of tensor calculus is provided. Quantization of the electromagnetic field in the radiation range is fully discussed. The essentials of the Lagrangian and Hamiltonian formalisms are reviewed, proceeding from systems with a finite number of degrees of freedom and extending the discussion to fields. The final four chapters are devoted to development of the quantum field theory, ultimately introducing the graphical description of interaction processes by means of Feynman diagrams. The book will be of value for students seeking to understand the main concepts that form the basis of contemporary theoretical particle physics and also for engineers and lecturers. An Appendix on some special relativity effects is added.
The Golden Oldies series of the journal General Relativity and Gravitation reprints important papers in general relativity theory that were published 30 or more years ago and are either hard to get hold of, or were originally printed in a language other than English. They play a key part in making these important papers readily accessible today, in the language that has now become the lingua franca of scientific publication. The value of this reprinting is enhanced by an accompanying editorial note for each paper, which briefly explains the significance of the work and where it has subsequently led to, together with a biographical note about the author or authors. This volume presents a selection of 14 rarities among the Golden Oldies grouped in the three categories "Basic results in differential geometry and general relativity," "Discussion of physical effects" and "Basic exact solutions and their interpretation." Researchers in the field will appreciate having these important papers collected in one book for the first time. Reprinted from the journal General Relativity and Gravitation.
This is the third edition of a well-received textbook on modern physics theory. This book provides an elementary but rigorous and self-contained presentation of the simplest theoretical framework that will meet the needs of undergraduate students. In addition, a number of examples of relevant applications and an appropriate list of solved problems are provided.Apart from a substantial extension of the proposed problems, the new edition provides more detailed discussion on Lorentz transformations and their group properties, a deeper treatment of quantum mechanics in a central potential, and a closer comparison of statistical mechanics in classical and in quantum physics. The first part of the book is devoted to special relativity, with a particular focus on space-time relativity and relativistic kinematics. The second part deals with Schroedinger's formulation of quantum mechanics. The presentation concerns mainly one-dimensional problems, but some three-dimensional examples are discussed in detail. The third part addresses the application of Gibbs' statistical methods to quantum systems and in particular to Bose and Fermi gases.
One of the ?rst Computer Science sites in Italy, in recent years, the Friuli region has become a very active hub in Computational Physics and other applications of Informatics to Human and Natural Sciences. In particular the University of Udine has developed a tradition in innovative cross-disciplinary research areas involving Computer Science and Physics, providing digital tools for laboratories such as NASA and CERN. The sixth International Symposium "Frontiers of Fundamental and Compu- tional Physics" (FFP6) aimed at providing a platform for a wide range of phy- cists to meet and share thoughts on the latest trends in various research areas including High Energy Physics, Theoretical Physics, Gravitation and Cosmology, Astrophysics, Condensed Matter Physics, Fluid Mechanics. Such frontier lines were uni?ed by the use of computers as an, often primary, research instrument, or dealing with issues related to information theory. The present Sixth International Symposium in the series wasorganizedatthe UniversityofUdine,Italyfrom26thto29th ofSeptember2004. TheUniversity of in the Udine and the B. M. Birla Science Centre in Hyderabad have collaborated organization of this Symposium and the edition of these Proceedings, under the auspices of their joint initiative the International Institute of ApplicableMat- maticsand InformationSciences. ThecontributionsintheProceedingsaregrouped as follows: * Field Theory, Relativity and Cosmology * Foundations of Physics and of Information Sciences * Nuclear and High-Energy Particle Physics and Astrophysics; Astroparticle Physics * Complex Systems; Fluid Mechanics * New Approaches to Physics Teaching ThisSymposiumhadanattendanceofover100participants. Therewere63- pers/presentations, including 4 introductory invited lectures delivered by the - belLaureatesL. CooperandG. 'tHooft,andbytheeminentphysicistsY.
The reviews presented in this volume cover a huge range of cluster of galaxies topics. Readers will find the book essential reading on subjects such as the physics of the ICM gas, the internal cluster dynamics, and the detection of clusters using different observational techniques. The expert chapter authors also cover the huge advances being made in analytical or numerical modeling of clusters, weak and strong lensing effects, and the large scale structure as traced by clusters.
Are we living in the "golden age" of cosmology? Are we close to understanding the nature of the unknown ingredients of the currently most accepted cosmological model and the physics of the early Universe? Or are we instead approaching a paradigm shift? What is dark matter and does it exist? How is it distributed around galaxies and clusters? Is the scientific community open to alternative ideas that may prompt a new scientific revolution - as the Copernican revolution did in Galileo's time? Do other types of supernovae exist that can be of interest for cosmology? Why have quasars never been effectively used as standard candles? Can you tell us about the scientific adventure of COBE? How does the extraction of the Cosmic Microwave Background anisotropy depend on the subtraction of the various astrophysical foregrounds? These, among many others, are the astrophysical, philosophical and sociological questions surrounding modern cosmology and the scientific community that Mauro D'Onofrio and Carlo Burigana pose to some of the most prominent cosmologists of our time. Triggered by these questions and in the spirit of Galileo's book "Dialogue Concerning the Two Chief World Systems" the roughly 40 interview partners reply in the form of essays, with a critical frankness not normally found in reviews, monographs or textbooks.
After about a century of success, physicists feel the need to probe the limits of validity of special-relativity base theories. This book is the outcome of a special seminar held on this topic. The authors gather in a single volume an extensive collection of introductions and reviews of the various facets involved, and also includes detailed discussion of philosophical and historical aspects.
Currently under construction in Northern Chile, the Atacama Large Millimeter Array (ALMA) is the most ambitious astronomy facility under construction. This book describes the enormous capabilities of ALMA, the state of the project, and most notably the scientific prospects of such a unique facility. The book includes reviews and recent results on most hot topics of modern astronomy. It looks forward to the revolutionary results that are likely to be obtained with ALMA.
A very attractive feature of the theory of general relativity is that it is a perfectexampleofa"falsi?able"theory:notunableparameterispresentinthe theory and therefore even a single experiment incompatible with a prediction of the theory would immediately lead to its inevitable rejection, at least in the physical regime of application of the aforementioned experiment. This fact provides additional scienti?c value to one of the boldest and most fascinating achievements of the human intellect ever, and motivates a wealth of e?orts in designing and implementing tests aimed at the falsi?cation of the theory. The ?rst historical test on the theory has been the de?ection of light gr- ing the solar surface (Eddington 1919): the compatibility of the theory with this ?rst experiment together with its ability to explain the magnitude of the perihelion advance of Mercury contributed strongly to boost acceptance and worldwideknowledge.However,technologicallimitations preventedphysicists from setting up more constraining tests for several decades after the formu- tion of the theory. In fact, a relevant problem with experimental general r- ativity is that the predicted deviations from the Newtonian theory of gravity areverysmallwhentheexperimentsarecarriedoutinterrestriallaboratories.
This book brings together reviews from leading international authorities on the developments in the study of dark matter and dark energy, as seen from both their cosmological and particle physics side. Studying the physical and astrophysical properties of the dark components of our Universe is a crucial step towards the ultimate goal of unveiling their nature. The work developed from a doctoral school sponsored by the Italian Society of General Relativity and Gravitation. The book starts with a concise introduction to the standard cosmological model, as well as with a presentation of the theory of linear perturbations around a homogeneous and isotropic background. It covers the particle physics and cosmological aspects of dark matter and (dynamical) dark energy, including a discussion of how modified theories of gravity could provide a possible candidate for dark energy. A detailed presentation is also given of the possible ways of testing the theory in terms of cosmic microwave background, galaxy redshift surveys and weak gravitational lensing observations. Included is a chapter reviewing extensively the direct and indirect methods of detection of the hypothetical dark matter particles. Also included is a self-contained introduction to the techniques and most important results of numerical (e.g. N-body) simulations in cosmology. " This volume will be useful to researchers, PhD and graduate students in Astrophysics, Cosmology Physics and Mathematics, who are interested in cosmology, dark matter and dark energy.
A collection of sixteen coordinated reviews on the origins of large-scale magnetic fields in the Universe, this book discusses magnetic fields in all relevant astrophysical contexts, from the interstellar medium to the scales of galaxies and clusters of galaxies. Magnetic fields are described in their very diverse environments, from stellar winds to galactic haloes and astrophysical jets; together with the roles they play in forming the structures and shaping the dynamics of these objects. Both observational evidence and its theoretical interpretations are covered up to the largest scales in the Universe. The authors are all leading scientists in their fields, making this book an authoritative, up-to-date and enduring contribution to astrophysics. This volume is aimed at graduate students and researchers in astrophysics. Previously published in Space Science Reviews journal, Vol. 166/1-4 and Vol. 169/1-4, 2012.
The composition of the most remote objects brought into view by the Hubble telescope can no longer be reconciled with the nucleogenesis of standard cosmology and the alternative explanation, in terms of the -Cold-Dark-Matter model, has no recognizable chemical basis. A more rational scheme, based on the chemistry and periodicity of atomic matter, opens up an exciting new interpretation of the cosmos in terms of projective geometry and general relativity. The response of atomic structure to environmental pressure predicts non-Doppler cosmical redshifts and equilibrium nucleogenesis by -particle addition, in accord with observed periodic variation of nuclear abundance. Inferred cosmic self similarity elucidates the Bode -Titius law, general commensurability in the solar system and the occurrence of quantum phenomena on a cosmic scale. The generalized periodic function involves both matter and anti-matter in an involuted mapping to a closed projective plane. This topology ensures the same symmetrical balance in a chiral universe, wrapped around an achiral vacuum interface, without singularities. A new cosmology emerges, based on the theory of projective relativ ity, presented here as a translation of Veblen's original German text. Not only does it provide a unification of gravity, electromagnetism and quantum theory, through gauge invariance, but also supports the solution of the gravitational field equations, obtained by Goedel for a rotating universe. The appearance of an Einstein-Rosen bridge as outlet from a black hole, into conjugate anti-space, accounts for globular clusters, quasars, cosmic radiation, -ray bursters, pulsars, radio sources and other re gions of plasma activity. The effects of a multiply-connected space-time manifold on observa tions in an Euclidean tangent space are unpredictable and a complete re-assessment of the size and structure of the universe is indicated. The target readership includes scientists, as well as non-scientists - everybody with a scientific or philosophical interest in cosmology and, especially those cosmologists and mathematicians with the ability to recast the crude ideas presented here into appropriate mathematical models.
This richly illustrated book is unique in bringing Einstein's relativity to a higher level for the non-specialist than has ever been attempted before, using nothing more than grade-school algebra. Bondi's approach with spacetime diagrams is simplified and expanded, clarifying the famous asymmetric aging-of-twins paradox. Einstein's theory of gravity, general relativity, is simplified for the reader using spacetime diagrams. The theory is applied to important topics in physics such as gravitational waves, gravitational collapse and black holes, time machines, the relationship to the quantum world, galactic motions and cosmology.
17 readable articles give a thorough and self-contained overview of recent developments in relativistic gravity research. The subjects covered are: gravitational lensing, the general relativistic n-body problem, observable effects in the solar system, gravitational waves and their interferometric detection, very-long-baseline interferometry, international atomic time, lunar laser- ranging measurements, measurement ofthe gravitomagnetic field of the Earth, fermion and boson stars and black holes with hair, rapidly rotating neutron stars, matter wave interferometry, and the laboratory test of Newton's law of gravity.Any scientist interested in experimentally or observatio- nally oriented relativistic gravity will read the book with profit. In addition, it is perfectly suited as a complementary text for courses on general relativity and relativistic astrophysics.
This book provides an introduction to the theory of relativity and the mathematics used in its processes. Three elements of the book make it stand apart from previously published books on the theory of relativity. First, the book starts at a lower mathematical level than standard books with tensor calculus of sufficient maturity to make it possible to give detailed calculations of relativistic predictions of practical experiments. Self-contained introductions are given, for example vector calculus, differential calculus and integrations. Second, in-between calculations have been included, making it possible for the non-technical reader to follow step-by-step calculations. Thirdly, the conceptual development is gradual and rigorous in order to provide the inexperienced reader with a philosophically satisfying understanding of the theory. The goal of this book is to provide the reader with a sound conceptual understanding of both the special and general theories of relativity, and gain an insight into how the mathematics of the theory can be utilized to calculate relativistic effects.
A major outstanding problem in physics is understanding the nature of the dark energy that is driving the accelerating expansion of the Universe. This thesis makes a significant contribution by demonstrating, for the first time, using state-of-the-art computer simulations, that the interpretation of future galaxy survey measurements is far more subtle than is widely assumed, and that a major revision to our models of these effects is urgently needed. The work contained in the thesis was used by the WiggleZ dark energy survey to measure the growth rate of cosmic structure in 2011 and had a direct impact on the design of the surveys to be conducted by the European Space Agency's Euclid mission, a 650 million euro project to measure dark energy. |
You may like...
Valuation Challenges and Solutions in…
Sinem Derindere Koeseolu
Hardcover
R6,218
Discovery Miles 62 180
System-on-Chip Architectures and…
Maire McLoone, John V. McCanny
Hardcover
R2,745
Discovery Miles 27 450
Advances in Numerical Methods
Nikos Mastorakis, John Sakellaris
Paperback
R2,697
Discovery Miles 26 970
Geospatial Algebraic Computations…
Joseph Awange, Bela Palancz
Hardcover
|