![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Relativity physics
The discovery of the ?rst case of superluminal radio jets in our galaxy in 1994 from the bright and peculiar X-ray source GRS 1915+105 has opened the way to a major shift in the direction of studies of stellar-mass accreting binaries. The past decade has seen an impressive increase in multi-wavelength studies. It is now known that all black hole binaries in our galaxy are radio sources and most likely their radio emission originates from a powerful jet. In addition to the spectacular events related to the ejection of superluminal jets, steady jets are known from many systems. Compared with their supermassive cousins, the nuclei of active galaxies, stellar-mass X-ray binaries have the advantage of varying on time scales accessible within a human life (sometimes even much shorter than a second). This has led to the ?rst detailed studies of the relation between accretion and ejection. It is even possible that, excluding their "soft" periods, the majority of the power in gal- tic sources lies in the jets and not in the accretion ?ows. This means that until a few years ago we were struggling with a physical problem, accretion onto compact objects, without considering one of the most important components of the system. Models that associate part of the high-energy emission and even the fast aperiodic variability to the jet itself are now being proposed and jets can no longer be ignored.
Topological defects have recently become of great interest in condensed matter physics, particle physics and cosmology. They are the unavoidable remnants of many symmetry breaking phase transitions. Topological defects can play an important role in describing the properties of many condensed matter systems (e.g. superfluids and superconduc tors); they can catalyze many unusual effects in particle physics models and they may be responsible for seeding the density perturbations in the early Universe which de velop into galaxies and the large-scale structure of the Universe. Topological defects are also of great interest in mathematics as nontrivial solutions of nonlinear differential equations stabilized by topological effects. The purpose of the Advanced Study Institute "Formation and Interactions of Topo logical Defects" was to bring together students and practitioners in condensed matter physics, particle physics and cosmology, to give a detailed exposition of the role of topo logical defects in these fields; to explore similarities and differences in the approaches; and to provide a common basis for discussion and future collaborative research on common problems.
The International Conference, Orbis Scientiae 1996, focused on the topics: The Neutrino Mass, Light Cone Quantization, Monopole Condensation, Dark Matter, and Gravitational Waves which we have adopted as the title of these proceedings. Was there any exciting news at the conference? Maybe, it depends on who answers the question. There was an almost unanimous agreement on the overall success of the conference as was evidenced by the fact that in the after-dinner remarks by one of us (BNK) the suggestion of organizing the conference on a biannual basis was presented but not accepted: the participants wanted the continuation of the tradition to convene annually. We shall, of course, comply. The expected observation of gravitational waves will constitute the most exciting vindication of Einstein's general relativity. This subject is attracting the attention of the experimentalists and theorists alike. We hope that by the first decade of the third millennium or earlier, gravitational waves will be detected, opening the way for a search for gravitons somewhere in the universe, presumably through the observations in the CMBR. The theoretical basis of the graviton search will take us to quantum gravity and eventually to the modification of general relativity to include the Planck scale behavior of gravity -at energies 19 of the order of 10 Ge V.
Cosmology in Scalar-Tensor Gravity covers all aspects of
cosmology in scalar-tensor theories of gravity. Considerable
progress has been made in this exciting area of physics and this
book is the first to provide a critical overview of the research.
Among the topics treated are:
The physical processes driving the different manifestations of the phe nomenon of active galactic nuclei have been studied extensively during the last decade. A major obstacle in all attempts to understand the relevant pro cesses has always been the wide range of frequencies over which significant fractions of the total power are emitted. During the last decade, orbiting telescopes and instrumental improvements for ground-based instrumenta tion provided the means for major advancements on the observational side. The organizers felt that it was timely to organize a meeting to discuss the impact of this new situation on the understanding of the relevant physical processes. More then 400 astrophysicists were interested in participating in the meeting, in spite of the constraints on overseas travel which were imposed in early 1991. Unfortunately only 220 participants could be hosted by the Max-Planck-Haus, the site of the 1991 Heidelberg conference. The meet ing was organized by Sonderforschungsbereich 328 "Evolution of Galaxies". During 5 sessions, most of which lasted for one day each, 47 invited and con tributed talks and 150 poster papers were given, most, but not all, of which are included in these proceedings. With a few exceptions the order of the written texts follows that of the oral contributions during the meeting. The arrangement of posters into the five sections was not always unambiguous. We hope to have placed them in the most appropriate sections, in which they are listed in alphabetical order.
Dark matter in the Universe has become one of the most exciting and central fields of astrophysics, particle physics and cosmology. The lectures and talks in this book emphasize the experimental and theoretical status and perspectives of the ongoing search for dark matter, and the future potential of the field into the next millennium, stressing in particular the interplay between astro- and particle physics.
String theories seem to have created a breakthrough in theoretical physics. At long last a unfied theory of all the fundamental interactions, including gravity, looks possible. This, according to theorist Stephen Hawking, will mark the end of theoretical physics as we have known it, since we will then have a single consistent theory within which to explain all natural phenomena from elementary particles to galactic superclusters. Strings themselves are extremely tiny entities, smaller than the Planck scale, which form loops whose vibrational harmonics can be used to model all the standard elementary particles. Of course the mathematical complexities of the theory are daunting, and physicists are still at a very early stage in understanding how strings and their theoretical cousins superstrings can be used. This proceedings volume gives an overview of the intense recent work in the field and reports latest developments.
The book provides readers with an understanding of the mutual conditioning of spacetime and interactions and matter. The spacetime manifold will be looked at to be a reservoir for the parametrization of operation Lie groups or subgroup classes of Lie groups. With basic operation groups or Lie algebras, all physical structures can be interpreted in terms of corresponding realizations or representations. Physical properties are related eigenvalues or invariants. As an explicit example of operational spacetime is proposed, called electroweak spacetime, parametrizing the classes of the internal hypercharge - isospin group in the general linear group in two complex dimensions, i.e., the Lorentz cover group, extended by the casual (dilation) and phase group. Its representations and invariants will be investigated with the aim to connect them, qualitatively and numerically, with the properties of interactions and particles as arising in the representations of its tangent Minkowski spaces.
The present NATO Advanced Study Institute held in CARGESE (Corsica) from Au- gust 8th to August 18th, 1989 was devoted to Hadronic Physics. We tried to give this school a key educational role in this new and rapidly developing interdisciplinary field. We hope that the combination of the lectures and the open atmosphere of scientific exchange and inquiry afforded by the Cargese format has provided a unique educational and scien- tific opportunity for students and has brought together all the relevant concepts and issues for frontier research in this field. We would like to express our gratitude to NATO for its generous financial support which made this Institute possible. We also wish to thank Dr. Luis V. Da Cunha, Director of the Scientific Affairs Division, for his valuable comments and advice. We acknowledge the support of the Institut de Physique Nucleaire et de Physique des Particules (France), the Commissariat a l'Energie Atomique (France), and the U.S. National Science Fundation, for the attribution of travel grants. Our special appreciation is due to Frederique Dykstra for her oustanding organiza- tional work throughout the preparation and duration of this conference It is also a pleasure to thank the Universite de Nice for making available the facilities of the Cargese Scientific Institute. The pictures of the lecturers included in the present volume were kindly provided by one of the participants, Dr.R.Janner.
This book on the theory of three-dimensional spinors and their applications fills an important gap in the literature. It gives an introductory treatment of spinors. From the reviews: "Gathers much of what can be done with 3-D spinors in an easy-to-read, self-contained form designed for applications that will supplement many available spinor treatments. The book...should be appealing to graduate students and researchers in relativity and mathematical physics." --MATHEMATICAL REVIEWS
What is unorthodox in this book? Much has happened in the last few years, especially in terms of the somewhat surpris ing rate at which the theories presented herein have been gaining increasing acceptance and support even by the most skeptical professionals. Nevertheless, the purpose of this up-dated Preface is not to tell the biographical and acceptance story behind this book, but to bring together some non-physical and non technical conclusions for those readers who find the physico-mathematical sections of this book too difficult to follow. A secondary purpose is to present here some newer conclu sions, especially in general philosophy and in aesthetics. Yet, the main physico philosophical conclusions presented in this book are not to be summarized here. For that purpose one must tum to the text itself. * * * The theories presented here have been developed in total isolation. They were never presented in "professional conferences," as most current writers do. Whether or not that was important remains to be seen. Hence, all I can state to critics and enthusiastic follow ers alike is the fact that I do not belong to any 'formal discipline', 'pressure group', or 'pro fessional organization'."
Because of recent progress in the development of quasistationary toroidal mag- netic confinement systems, especially tokamaks, these systems are at the center of research on controlled thermonuclear fusion. Tokamaks were proposed and first built at the Kurchatov Institute of Atomic Energy. In the 1960s the basic features of plasma behavior in toroidal magnetic confinement systems were investigated in ex- periments on the first tokamaks and the possibility of obtaining effective confine- ment in them was demonstrated. The successes of this first stage led to a rapid ex- pansion in tokamak research around the world. The development of a thermonu- clear power reactor based on the tokamak is now actively under way. During the earliest phase of research on tokamaks, it was already clear that the ohmic heating used in them was not sufficient to obtain the temperatures needed for initiation of a self-sustaining thermonuclear reaction. At the beginning of the 1970s, therefore, a search was begun for methods of heating which could supple- ment ohmic heating. The best of these auxiliary heating techniques are neutral beam injection, various methods based on the collisionless absorption of rf (radio fre- quency) waves, and adiabatic compression of the plasma by a rising magnetic field.
The Cargese Workshop Random Surfaces and Quantum Gravity was held from May 27 to June 2, 1990. Little was known about string theory in the non-perturbative regime before Oetober 1989 when non-perturbative equations for the string partition functions were found by using methods based on the random triangulations of surfaees. This set of methods pro vides a deseription of non-eritical string theory or equivalently of the coupling of matter fields to quantum gravity in two dimensions. The Cargese meeting was very successful in that it provided the first opportunity to gather most of the active workers in the field for a fuH week of lectures and extensive informal discussions about these exeiting new developments. The main results were reviewed, recent advances were explained, new results and conjectures (which appear for the first time in these proceedings) were presented and discussed. Among the most important topics discussed at the workshop were: The relation of KdV theory to loop equations and the Virasoro algebra, new results in Liouville field theory, effective (1 + 1) dimensional theory for 2 - D quantum gravity coupled to c = 1 matter and its fermionization, proposal for a new geometrical interpretation of the string equation and possible definition of quantum Riemann surfaces, discussion of the string equation for the multi-matrix models, links with topological field theories of gravity, issues in using target space supersymmetry to define good theories, definition of the partition function via analytic continuation, new models of random surfaces
In many areas of physics, such as astrophysics, solid-state physics, nuclear physics and particle physics, a major outstanding problem is a better understanding of corre lation phenomena. While in most cases the average properties of a system are rather well understood, the correlations and the resulting clustering are poorly understood. They are reflections of the force mediating the interaction among the constituents and play essential roles in determining the structure of a physical system. At the largest scales, in astrophysics, it has recently been realized that there are huge voids in space and almost all matter is concentrated on filaments, raising interesting questions concerning the origin of this clustering of matter. In nuclear physics corre lation phenomena are important in all its subfields. It has been realized that so-called fluctuations in the one-particle density, which are a manifestation of nucleon-nucleon correlations, are crucial. These are important for an understanding of heavy-ion reac tions. This is the subject of modern quantum transport theories. Correlations are also crucial in the description of the high momentum components as observed in quasi-elastic knock-out reactions."
NASA's Advanced Composition Explorer (ACE) was launched on August 25, 1997, carrying six high-resolution spectrometers that measure the abundances of the elements, isotopes, and ionic charge states of energetic nuclei in space. Data from these instruments is being used to measure and compare the composition of the solar corona, the nearby interstellar medium, and cosmic-ray sources in the Galaxy, and to study particle acceleration processes in a variety of environments. ACE also includes three instruments that monitor solar wind and energetic particle activity near the inner Lagrangian point, "1.5 million kilometers sunward of Earth, and provide continuous, real-time data to NOAA for use in forecasting space weather. Eleven of the articles in this volume review scientific progress and outline questions that ACE will address in solar, space-plasma, and cosmic-ray physics. Other articles describe the ACE spacecraft, the real-time solar-wind system, and the instruments used to measure energetic particle composition.
This volume contains the proceedings of the meeting entitled, "The IGM/Galaxy Connection: The Distribution of Baryons at z = 0. " The meeting was held August 8 -10 at the National Center for Atmospheric Research (NCAR) located in Boulder, Colorado on the foothills of the Rocky Mountains (see conference photo). We organized this meeting because we felt it was time to address the link between galaxies and the intergalactic medium at low redshift. In this vein, we posed several questions to the conference participants: Where are the baryons in the local universe and in what phase do they reside? What signatures of galaxy evolution have been imprinted on the IGM? What percentage of intergalactic gas is left from the galaxy formation process? What does the distribution of baryons at z = 0 tell us about the early universe? The conference was an overwhelming success with lots of friendly interaction and discussion among the participants. At lunch we were treated to splendid views from the NCAR terrace and discussions rang ing from the importance of the LSR, GSR, and LGSR velocity frames to how long the desserts would last with 90 astronomers and the hot Boul der sun. From an inventory of the baryons, to the associations between galaxies and Lya absorbers, to the mechanisms by which galaxies obtain and lose gas, the conference covered many topics. The results of these endeavors are contained in these pages and eloquently summarized by Chris Impey.
Outstanding progress in near-infrared detection technology and in real-time image processing has led astronomers to start undertaking all-sky surveys in the 1--2 mum range (project DENIS in Europe and 2MASS in the U.S.A.), surveys which will have a considerable impact in various areas of astronomy. This book gathers the contributions of more than 80 specialists involved in fields of interest as different as low mass stars, late stages of stellar evolution, star formation, stellar populations of the Galaxy and the Magellanic Clouds, the local structure of the Universe, and observational cosmology. It describes the impact on these fields of the exhaustive data bases and catalogs of stars and galaxies that these surveys will provide. The considerable interest of these documents for the future of infrared space and ground-based projects and the complementarity with other currently ongoing or planned surveys in other spectral ranges are emphasized.
Modem dynamics is increasingly participating in the solution of problems raised by as tronomical observations. This new relationship is being fostered on one side by the im provements in the observations, which in recent years contributed several discoveries of new systems, such as the objects in the Kuiper belt, the pulsar and star companions, to speak only of the most striking ones, and, on the other hand, by the progresses in modem dynamics. The progresses in modem dynamics are due to two factors: the dissemination of fast computers, allowing the numerical studies of very complex systems by a large number of scientists, and the improvement in our understanding of the complex behaviour of Hamiltonian systems. KAM and Nekhorochev theories have shed a light on the subtle and surprizing interplays between regular and chaotic motions; numerical experiments and analytical approximations have shown how these peculiarities are indeed present in astronomically important systems and are instrumental in understanding their formation and evolution.
Today many scientists recognize plasma as the key element in understanding new observations in interplanetary and interstellar space, in stars, galaxies, and clusters of galaxies, and throughout the observable universe. Plasma astrophysics and cosmology, as a unified discipline, cover topics such as the large scale structure and filamentation of the universe; the microwave background; the formation of galaxies and magnetic fields; active galactic nuclei and quasars; the origin and abundance of light elements; star formation and the evolution of solar systems; redshift periodicities and anomalous redshifts; general relativity; electric fields; the acceleration of charged particles to high energies; and cosmic rays. Plasma Astrophysics and Cosmology is an update on the observations made in radio, optical, and high-energy astrophysics, especially over the last decade, and addresses the paradigm changing discoveries made by the planetary probes and satellites, radio telescopes, and the Hubble space telescope. Over twenty contributors, all distinguished plasma scientists, present an entirely new picture of the nature of our plasma universe with articles ranging from the popular level to advanced topics in plasma cosmology.
The main feature of this book is the emphasis on "practice." This approach, unusual in the relativistic literature, may be clarified by quoting some problems discussed in the text: - the analysis of rocket acceleration to relativistic velocities - the influence of gravitational fields on the accuracy of time measurements - the operation of optical rotation sensors - the evaluation of the Doppler spectrum produced by the linear (or ro- tional) motion of an antenna or scatterer - the use of the Cerenkov effect in the design of millimeter-wave power generators - the influence of the motion of a plasma on the transmission of electrom- netic waves through this medium. A correct solution of these (and analogous) problems requires the use of re lativistic principles. This remark remains valid even at low velocities, since first-order terms in (v/c) often playa fundamental role in the equations. The "applicational" approach used in the text should be acceptable to space engineers, nuclear engineers, electrical engineers, and more generally, ap plied physicists. Electrical engineers, in particular, are concerned with re lativity by way of the electrodynamics of moving bodies. This discipline is of decisive importance for power engineers, who are confronted with problems such as - the justification of a forcing function (-D /Dt) in the circuit equation of a moving loop - a correct formulation of Maxwell's equations in rotating coordinate systems - the resolution of "sliding contact" paradoxes - a theoretically satisfying analysis of magnetic levitation systems."
This richly annotated facsimile edition of "The Foundation of General Relativity" introduces a new generation of readers to Albert Einstein's theory of gravitation. Written in 1915, this remarkable document is a watershed in the history of physics and an enduring testament to the elegance and precision of Einstein's thought. Presented here is a beautiful facsimile of Einstein's original handwritten manuscript, along with its English translation and an insightful page-by-page commentary that places the work in historical and scientific context. Hanoch Gutfreund and Jurgen Renn's concise introduction traces Einstein's intellectual odyssey from special to general relativity, and their essay "The Charm of a Manuscript" provides a delightful meditation on the varied afterlife of Einstein's text. Featuring a foreword by John Stachel, this handsome edition also includes a biographical glossary of the figures discussed in the book, a comprehensive bibliography, suggestions for further reading, and numerous photos and illustrations throughout.
This volume comprises selected lectures presented in the Ninth Course of the International School ofCosmic-Ray Astrophysics held at the Ettore Majorana Centre in Erice, Sicily, May 7-18,1994. Director ofthe Centre is A. Zichichi, assisted by M. Zaini. Director ofthe School is M. M. Shapiro. 1. P. Wefel was co-director of the Ninth Course, which was also a NATO Advanced Study Institute (ASI), and NATO support is gratefully acknowledged. Devoted to problems and prospects in high-energy astrophysics and cosmology, the major areas explored in this course were: gamma-ray, X-ray, and neutrino astronomies; cosmic rays; pulsars and supernova remnants; and cosmology, as well as cosmogony. Among the principal developments in gamma-ray astrophysics were those generated by the Compton Gamma Ray Observatory. Cosmic neutrinos at MeV energies, i.e., those from the sun and from Supernova 1987a, were discussed, as well as neutrino masses in astrophysics. The source composition ofcosmic rays, and extensive air shower experiments, received special attention. The early universe according to COBE data, and as viewed by theorists ofcosmology, was reviewed. Finally, the connections with particle physics occasioned a timely description ofthe Standard Model ofelementary particles.
This book is an updated and modified translation of the Russian edition of 1984. In the present edition, certain sections have been abridged (in particular, Sects. 6.1 and 8.3) and the bibliography has been expanded. There are more detailed discus sions of the group properties of integrable systems of equations of mathematical physics (Sect. 3.4) and of the Riemannian problem in the context of the infinite dimensional internal symmetry groups of these systems of equations. There is an extended discussion of the reasons for the acceleration and retardation of pulsars in connection with more recent achievements of X-ray astronomy. Part of the material of Chap. 8 of the Russian edition has been included in Chap. 7; thus the number of chapters has been reduced to seven. S. Chandrasekhar set for me an example of brilliant analytical penetration into the essence of physical problems, and my book touches on his work in many in stances. The results of modem quantum theories of strong fields are not presented, but they can be found in the fundamental monographs Quantwn Electrodynamics of Strong Fields by W. Greiner, B. Muller, J. Rafelski (Sprioger-Verlag, Berlin, Heidelberg, New York 1985) and Quantwn Effects in Intense External Fields in Russian] by A. Grib, S. Mamaev, W. Mostepanenko (Energoatomizdat, Moscow 1988). This book was translated by Dr. N. M. Queen; I am very grateful to him. I thank sincerely H. Latta, C.-D. Bachem, V. Rehman, S. von Kalckreuth for preparing of the english manuscript."
In June of 1996, at the idyllic seaside resort of Guaruja, Brazil, a renowned group of researchers in space and astrophysical plasmas met to provide a forum on Advanced Topics on Astrophysical and Space Plasmas at a school consisting of some 60 students and teachers, mainly from Brazil and Argentina, but also from all the other parts of the globe. The purpose was to provide an update on the latest theories, observations, and simulations of space-astrophysical plasma phenomena. The topics covered included space plasma mechanisms for particle acceleration, nonthermal emission in cosmic plasma, magnetohydrodynamic instabilities in solar, interstellar, and other cosmic objects, magnetic field line reconnection and merging, the nonlinear and often chaotic structure of astrophysical plasmas, and the advances in high performance supercomputing resources to replicate the observed phenomena. The lectures were presented by Professor Mark Birkinshaw of the Harvard-Smithsonian Center for Astrophysics and the University of Bristol; Dr Anthony Peratt, Los Alamos National Laboratory Scientific Advisor to the United States Department of Energy; Dr Dieter Biskamp of the Max Planck Institute for Plasma Physics, Garching, Germany; Professor Donald Melrose, Director, Centre for Theoretical Astrophysics, University of Sydney, Australia; Professor Abraham Chian of the National Institute for Space Research, Brazil; and Professor Nelson Fiedler-Ferrara of the University of Sao Paulo, Brazil. As summarized by Professor Reuven Opher, Institute of Astronomy and Geophysics, University of Sao Paulo, the advanced or interested student of space and astrophysical plasmas will find reference to nearly all modern aspects in the field of Plasma Astrophysics and Cosmology in the presented lectures.
This book reflects our own struggle to understand the semiclassical behaviour of quantized fields in the presence of boundaries. Along many years, motivated by the problems of quantum cosmology and quantum field theory, we have studied in detail the one-loop properties of massless spin-l/2 fields, Euclidean Maxwell the ory, gravitino potentials and Euclidean quantum gravity. Hence our book begins with a review of the physical and mathematical motivations for studying physical theories in the presence of boundaries, with emphasis on electrostatics, vacuum v Maxwell theory and quantum cosmology. We then study the Feynman propagator in Minkowski space-time and in curved space-time. In the latter case, the corre sponding Schwinger-DeWitt asymptotic expansion is given. The following chapters are devoted to the standard theory of the effective action and the geometric im provement due to Vilkovisky, the manifestly covariant quantization of gauge fields, zeta-function regularization in mathematics and in quantum field theory, and the problem of boundary conditions in one-loop quantum theory. For this purpose, we study in detail Dirichlet, Neumann and Robin boundary conditions for scalar fields, local and non-local boundary conditions for massless spin-l/2 fields, mixed boundary conditions for gauge fields and gravitation. This is the content of Part I. Part II presents our investigations of Euclidean Maxwell theory, simple super gravity and Euclidean quantum gravity. |
You may like...
Advances in Quantum Monte Carlo
James B Anderson, Stuart M. Rothstein
Hardcover
R2,690
Discovery Miles 26 900
The Evolutionary Cosmos - Outside-In…
Richard Westberg, Cal Orey
Hardcover
R1,032
Discovery Miles 10 320
Quantum Mechanics of Fundamental…
Marc Henneaux, Jorge Zanelli
Hardcover
R5,309
Discovery Miles 53 090
|