![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Relativity physics
Based on his successful work "Special Relativity and Motions Faster than Light," Moses Fayngold has written a thorough presentation of the special theory of relativity. The unique feature of the textbook is its two-leveled structure helping students to master the material more effectively: the first level presents a qualitative discussion of a problem, while the second one contains its rigorous treatment. Fayngold points out the connection between fundamental principles and known phenomena. In three new chapters on 'Relativity at Work' (Electromagnetism, Optics, Quantum Mechanics), he not only shows what relativity is, but also how it works. The scope of new material extends to include a chapter on Causality and on Applied Relativity, including astrophysical and accelerator topics. Backed throughout by numerous examples and exercises.
This book offers a presentation of the special theory of relativity that is mathematically rigorous and yet spells out in considerable detail the physical significance of the mathematics. It treats, in addition to the usual menu of topics one is accustomed to finding in introductions to special relativity, a wide variety of results of more contemporary origin. These include Zeeman s characterization of the causal automorphisms of Minkowski spacetime, the Penrose theorem on the apparent shape of a relativistically moving sphere, a detailed introduction to the theory of spinors, a Petrov-type classification of electromagnetic fields in both tensor and spinor form, a topology for Minkowski spacetime whose homeomorphism group is essentially the Lorentz group, and a careful discussion of Dirac s famous Scissors Problem and its relation to the notion of a two-valued representation of the Lorentz group. This second edition includes a new chapter on the de Sitter universe which is intended to serve two purposes. The first is to provide a gentle prologue to the steps one must take to move beyond special relativity and adapt to the presence of gravitational fields that cannot be considered negligible. The second is to understand some of the basic features of a model of the empty universe that differs markedly from Minkowski spacetime, but may be recommended by recent astronomical observations suggesting that the expansion of our own universe is accelerating rather than slowing down. The treatment presumes only a knowledge of linear algebra in the first three chapters, a bit of real analysis in the fourth and, in two appendices, some elementary point-set topology. The first edition of the book received the 1993 CHOICE award for Outstanding Academic Title. Reviews of first edition: a valuable contribution to the pedagogical literature which will be enjoyed by all who delight in precise mathematics and physics. (American Mathematical Society, 1993) Where many physics texts explain physical phenomena by means of mathematical models, here a rigorous and detailed mathematical development is accompanied by precise physical interpretations. (CHOICE, 1993) his talent in choosing the most significant results and ordering them within the book can t be denied. The reading of the book is, really, a pleasure. (Dutch Mathematical Society, 1993) "
The study of classical electromagnetic fields is an adventure. The theory is complete mathematically and we are able to present it as an example of classical Newtonian experimental and mathematical philosophy. There is a set of foundational experiments, on which most of the theory is constructed. And then there is the bold theoretical proposal of a field-field interaction from James Clerk Maxwell. This textbook presents the theory of classical fields as a mathematical structure based solidly on laboratory experiments. Here the student is introduced to the beauty of classical field theory as a gem of theoretical physics. To keep the discussion fluid, the history is placed in a beginning chapter and some of the mathematical proofs in the appendices. Chapters on Green's Functions and Laplace's Equation and a discussion of Faraday's Experiment further deepen the understanding. The chapter on Einstein's relativity is an integral necessity to the text. Finally, chapters on particle motion and waves in a dispersive medium complete the picture. High quality diagrams and detailed end-of-chapter questions enhance the learning experience."
Today many scientists recognize plasma as the key element to understanding new observations in near-Earth, interplanetary, interstellar, and intergalactic space; in stars, galaxies, and clusters of galaxies, and throughout the observable universe. Physics of the Plasma Universe, 2nd Edition is an update of observations made across the entire cosmic electromagnetic spectrum over the two decades since the publication of the first edition. It addresses paradigm changing discoveries made by telescopes, planetary probes, satellites, and radio and space telescopes. The contents are the result of the author's 37 years research at Livermore and Los Alamos National Laboratories, and the U.S. Department of Energy. This book covers topics such as the large-scale structure and the filamentary universe; the formation of magnetic fields and galaxies, active galactic nuclei and quasars, the origin and abundance of light elements, star formation and the evolution of solar systems, and cosmic rays. Chapters 8 and 9 are based on the research of Professor Gerrit Verschuur, and reinvestigation of the manifestation of interstellar neutral hydrogen filaments from radio astronomical observations are given. Using data from the Green Bank 100-m telescope (GBT) of the National Radio Astronomy Observatory (NRAO), detailed information is presented for a non-cosmological origin for the cosmic microwave background quadruple moment. This volume is aimed at graduate students and researchers active in the areas of cosmic plasmas and space science. The supercomputer and experimental work was carried out within university, National laboratory, Department of Energy, and supporting NASA facilities.
"Here's a gem of a book...all peppered with delightful notes from science fiction films, novels, and comics. I can't turn a page without finding a jewel." Clifford Stoll, University of California, Berkeley, author of The Cuckoo's Egg "The research that has gone into this book is impressive." Nature "For professional physicists much of the value lies in the extensive technical appendices and footnotes, and the exhaustive list of references. But if, like me, you are a child at heart, the real fun lies in the zany stories and wild speculations." Physics World Time Machines explores the idea of time travel from the first account in English literature to the latest theories of physicists such as Kip Thorne and Igor Novikov. This very readable work covers a variety of topics including the history of time travel in fiction; the fundamental scientific concepts of time, spacetime, and the fourth dimension; the speculations of Einstein, Richard Feynman, Kurt Goedel, and others; time travel paradoxes, and much more.
In this book, the author leads the reader, step by step and without any advanced mathematics, to a clear understanding of the foundations of modern elementary particle physics and cosmology. He also addresses current and controversial questions on topics such as string theory. The book contains gentle introductions to the theories of special and general relativity, and also classical and quantum field theory. The essential aspects of these concepts are understood with the help of simple calculations; for example, the force of gravity as a consequence of the curvature of the space-time. Also treated are the Big Bang, dark matter and dark energy, as well as the presently known interactions of elementary particles: electrodynamics, the strong and the weak interactions including the Higgs boson. Finally, the book sketches as yet speculative theories: Grand Unification theories, supersymmetry, string theory and the idea of additional dimensions of space-time. Since no higher mathematical or physics expertise is required, the book is also suitable for college and university students at the beginning of their studies. Hobby astronomers and other science enthusiasts seeking a deeper insight than can be found in popular treatments will also appreciate this unique book.
Through examining the work of W. B. Yeats, James Joyce, and Samuel Beckett, Katherine Ebury shows cosmology had a considerable impact on modernist creative strategies, developing alternative reading models of difficult texts such as Finnegans Wake and 'The Trilogy'.
A brief introduction to gravity through Einstein's general theory of relativity Of the four fundamental forces of nature, gravity might be the least understood and yet the one with which we are most intimate. From the months each of us spent suspended in the womb anticipating birth to the moments when we wait for sleep to transport us to other realities, we are always aware of gravity. In On Gravity, physicist A. Zee combines profound depth with incisive accessibility to take us on an original and compelling tour of Einstein's general theory of relativity. Inspired by Einstein's audacious suggestion that spacetime could ripple, Zee begins with the stunning discovery of gravity waves. He goes on to explain how gravity can be understood in comparison to other classical field theories, presents the idea of curved spacetime and the action principle, and explores cutting-edge topics, including black holes and Hawking radiation. Zee travels as far as the theory reaches, leaving us with tantalizing hints of the utterly unknown, from the intransigence of quantum gravity to the mysteries of dark matter and energy. Concise and precise, and infused with Zee's signature warmth and freshness of style, On Gravity opens a unique pathway to comprehending relativity and gaining deep insight into gravity, spacetime, and the workings of the universe.
The 1994 Cargese Summer Institute on Frontiers in Partide Physics was organized by the Universite Pierre et Marie Curie, Paris (M. Levy), the Ecole Normale Superieure, Paris (J. Iliopoulos), the Katholieke Universiteit Leuven (R. Gastmans), and the Uni- versite Catholique de Louvain (J. -M. Gerard), which, since 1975, have joined their efforts and worked in common. It was the eleventh Summer Institute on High Energy Physics organized jointly at Cargese by three of these universities. Severa! new frontiers in partide physics were thoroughly discussed at this school. the new euergy range in deep-iuelastic electron-proton scattering is beiug In particular, explored by HERA (DESY, Hamburg), and Professor A. De Roeck described the first results from the H1 and Zeus experiments, while Professors A. H. Mueller aud Z. Kuuszt discussed their relevance from the theoretical point of view. Also, the satellite exper- iments offer new possibilities for exploring the links between astrophysics, cosmology, and partide physics. A critica] a. nalysis of these experiments was performed by Pro- fessor B. Sadoulet, and Professor M. Spiro made the connection with the results from earth-based neutrino experiments. Finally, much attentiou was giveu to the latest re- sults from the TEVATRON (Fermilab, USA), showing further evidence for the loug awaited top quark. Professor A. Tollestrup gave a detailed presentation of these results aud discussed their importance for the Standard Model.
This thesis is based on the first data from the Large Hadron Collider (LHC) at CERN. Its theme can be described as the classical Rutherford scattering experiment adapted to the LHC: measurement of scattering angles to search for new physics and substructure. At the LHC, colliding quarks and gluons exit the proton collisions as collimated particle showers, or jets. The thesis presents studies of the scattering angles of these jets. It includes a phenomenological study at the LHC design energy of 14 TeV, where a model of so-called large extra dimensions is used as a benchmark process for the sensitivity to new physics. The experimental result is the first measurement, made in 2010, by ATLAS, operating at the LHC start-up energy of 7 TeV. The result is compatible with the Standard Model and demonstrates how well the physics and the apparatus are understood. The first data is a tiny fraction of what will be accumulated in the coming years, and this study has set the stage for performing these measurements with confidence as the LHC accumulates luminosity and increases its energy, thereby probing smaller length scales.
This book addresses physicists working in general relativity, astrophysics and cosmology. The contributions are based on reports given at a summer school the goal of which was to review modern research for students. The school was centered on the study of gravitational fields corresponding to rotating objects of astrophysical interest, under different viewpoints: theoretical, numerical and observational. Special emphasis is put on the analysis of interior and exterior fields of stationary axisymmetric systems. Lectures and contributions, collected here in Part I, ranged from basic information useful to newcomers to technical points pertaining to current research in this area. Part II contains lectures and contributions on other aspects of gravitation theory.
Supergravity can be seen as an intermediate step between general relativity and a future quantum theory of gravity. For the reader familiar with the basic concepts, this volume gives a concise presentation of both conformal and Poincare supergravity. The consistent four-dimensional supergravity theories are classified. For the practitioner in this field the book will be a valuable source, in particular with respect to the rather awkward formulae needed for further modelling, which have been carefully checked by the author. The book will be helpful not only for researchers, but also for advanced students."
A major outstanding problem in physics is understanding the nature of the dark energy that is driving the accelerating expansion of the Universe. This thesis makes a significant contribution by demonstrating, for the first time, using state-of-the-art computer simulations, that the interpretation of future galaxy survey measurements is far more subtle than is widely assumed, and that a major revision to our models of these effects is urgently needed. The work contained in the thesis was used by the WiggleZ dark energy survey to measure the growth rate of cosmic structure in 2011 and had a direct impact on the design of the surveys to be conducted by the European Space Agency's Euclid mission, a 650 million euro project to measure dark energy.
List of Participants **. **. *. . . . *. . **. . . **. **. *. *. . . **. *. *. . . **. * xi I. MOSS / The Quantum Origin of the Universe ****. *. *. ***. ***. *** M. S. TUru~ER / Cosmology and Particle Physics *. . ***. **. *. . ***. ** 19 G. GELMINI / Supersynunetry and the Early Universe ***. *. **. . *. *. . 115 J. D. BARROW / Relativistic Cosmology. . . . . . . . . . . . . . . . . . . . . . . . . . . 125 P. J. E. PEEBLES / Yet Another Scenario for Galaxy Formation . **. 203 ?:1. B. '-lISE / Non-Gaussian Fluctuations. . . . . . . . . . . . . . . . . . . . . . . . . . 215 S. D. H. mUTE / N-body Hethods and the Formation of Large-Scale Structure * . *. . . . * . * * . * * * . . . * . . . . * * . . . * . * . . 239 * . . . * * . . . . * T. PI~~ / Numerical Relativity and Cosmology. . . . . . . . . . . . . . . . . . . 261 J. R. BOND / Distortions and Anisotropies of the Cosmic Background Radiation *. *. . . **. **. ***. ****. . **. . *****. ** 283 J. V. HALL / The Early Universe - An Observer's View. . . . . . . . . . . . 335 G. GELHINI / Can the Solar Neutrino Problem be the First Detected Signature of Dark Hatter from the Halo of Our Galaxy? 351 A. K. DRUKIER / Detecting Cold Dark !1atter Candidates *. *. *. . . *. . 361 S. TOULMIN / The Early Universe: Historical and Philosophical Perspectives . *. *. . . . . . . *. . . . ***. *. *. *. *. . . . ****. . *. *. * 393 INDEX . . *. . . *. . . **. . . ****. . . *****. . . *. *. *. . *. . . . *. . *. *. . . **. ***.
The articles collected in this volume cover topics ranging from Planck-scale physics to galaxy clustering. They deal with various new ideas from cosmology, astrophysics and particle physics that might lead to a better understanding of our physical universe. Among the topics covered are inflationary models, nucleosynthesis, dark matter, large-scale clustering, cosmic microwave background radiations and more. The book addresses researchers but it also gives a good overview of the subject for graduate students in astrophysics and particle physics.
Published in honour of Marc Feix this book tries to give a thorough overview of mathematical methods, analytical and numerical techniques and simulations applied to a variety of problems from physics and engineering. The book addresses graduate students, researchers and especially engineers. The main emphasis is to apply the generality of methods to form a coherent and stimulating approach to practical investigations.
The five lectures presented in this volume address very timely mathematical problems in relativity and cosmology. "Part I" is devoted to the initial value and evolution problems of the Einstein equations. Especially it deals with the Einstein-Yang-Mills-Boltzmann system, fluid models with finite or infinite conductivity, global evolution of a new (two-phase) model for gravitational collapse and the structure of maximal, asymptotically flat, vacuum solutions of the constraint equations which have the additional property of containing trapped surfaces. "Part II" focuses on geometrical-topological problems in relativity and cosmology: on the role of cosmic censorship for the global structure of the Einstein-Maxwell equations and on the mathematical structure of quantum conformal superspace.
"General Relativity Without Calculus" offers a compact but mathematically correct introduction to the general theory of relativity, assuming only a basic knowledge of high school mathematics and physics. Targeted at first year undergraduates (and advanced high school students) who wish to learn Einstein's theory beyond popular science accounts, it covers the basics of special relativity, Minkowski space-time, non-Euclidean geometry, Newtonian gravity, the Schwarzschild solution, black holes and cosmology. The quick-paced style is balanced by over 75 exercises (including full solutions), allowing readers to test and consolidate their understanding.
The Hidden Hypotheses Behind the Big Bang It is quite unavoidable that many philosophical a priori assumptions lurk behind the debate between supporters of the Big Bang and the anti-BB camp. The same battle has been waged in physics between the determinists and the opposing viewpoint. Therefore, by way of introduction to this symposium, I would like to discuss, albeit briefly, the many "hypotheses", essentially of a metaphysical nature, which are often used without being clearly stated. The first hypothesis is the idea that the Universe has some origin, or origins. Opposing this is the idea that the Universe is eternal, essentially without beginning, no matter how it might change-the old Platonic system, opposed by an Aristote lian view! Or Pope Pius XII or Abbe Lemaitre or Friedmann versus Einstein or Hoyle or Segal, etc. The second hypothesis is the need for a "minimum of hypotheses" -the sim plicity argument. One is expected to account for all the observations with a mini mum number of hypotheses or assumptions. In other words, the idea is to "save the phenomena", and this has been an imperative since the time of Plato and Aristotle. But numerous contradictions have arisen between the hypotheses and the facts. This has led some scientists to introduce additional entities, such as the cosmologi cal constant, dark matter, galaxy mergers, complicated geometries, and even a rest mass for the photon. Some of the proponents of the latter idea were Einstein, de Broglie, Findlay-Freundlich, and later Vigier and myself.
Meant as a review for students of astrophysics and particle physics, this book contains a selection of survey articles and seminar reports on "high energy cosmology." Included are contributions on topics ranging from classical cosmology, large scale structure, and primordial nucleosynthesis to quantum cosmology, covering both the theoretical aspects and the most important observations.
Edgard Gunzig and Pasquale Nardone RGGR Universite Libre de Bruxelles CP231 1050 Bruxelles Belgium The NATO Advanced Research Workshop on "The Origin of Structure in the Universe" was organized to bring together workers in various aspects of relativistic cosmology with the aim of assessing the present status of our knowledge on the formation and evolution of structure. As it happened, the meeting was particularly timely. Only two days before the 30 or so physicists from many countries gathered for a week at the Chateau du Pont d'Oye, in the forests of the southern Belgian province of Luxembourg, newspaper headlines all over the world announced the results of the analysis of the first full year of data from the Cosmic Background Observer Satellite (COBE). This long-awaited confirmation of the theoretically predicted anisotropy in the microwave background radiation opened a new era in observational cos mology. The realization of the new relevance of the subject of the workshop and the questions raised by the observational results, in addition to bring ing TV crews and newspaper journalists, naturally influenced and stimulated many discussions among the participants. The success of the meeting as usual is due to a combination of factors. Besides the high quality of the talks, discussions were encouraged by the warm atmosphere of the Chateau, for which we are grateful to Mme. Camille Orts, and its beautiful surroundings, not to mention the marvelous cuisine.
This book addresses graduate students in the first place and is meant as a modern compendium to the existing texts on black hole astrophysics. The authors present in pedagogically written articles our present knowledge on black holes covering mathematical models including numerical aspects and physics and astronomical observations as well. In addition, in their write-up of a panel discussion the participants of the school address the existence of black holes consenting that it has by now been verified with certainty.
Jean-Pierre Vigier continually labeled one of les heretiques de la science, l'eternel resistant et le patriarche is yet a pillar of modern physics and mathematics, with one leg firmly planted in theory and the other in empiricism spanning a career of nearly 60 years with a publication vitae quickly approaching 400! He wrote of his mentor Louis de Broglie "Great physicists fight great battles", which perhaps applies even more so to 1 Jean-Pierre Vigier himself . If fortune allows a visit to Paris, reported to be the city of love, and certainly one of the most beautiful and interesting cities in the world; one has been treated to a visual and cultural feast. For example a leisurely stroll from the Musee du Louvre along the Champs-Elysees to the Arc de Triomphe would instill even the least creative soul with the entelechies of a poets muse. It is perhaps open to theoretical interpretation, but if causal conditions have allowed one to be a physicist, visiting Paris, one may have taken opportunity to visit the portion of the old Latin quarter in place Jussieu where Pierre et Marie Curie Universite, reported to be 'the best university in France', is stationed.
This collection of articles gives a nice overview of the fast growing field of diffusion and transport. The area of non-Browman statistical mechanics has many extensions into other fields like biology, ecology, geophysics etc. These tutorial lectures address e.g. Levy flights and walks, diffusion on metal surfaces or in superconductors, classical diffusion, biased and anomalous diffusion, chemical reaction diffusion, aging in glassy systems, diffusion in soft matter and in nonsymmetric potentials, and also new problems like diffusive processes in econophysics and in biology."
1. The Workshop and this Tome In the excellent bucolic setting of SchloB Ringberg in Upper Bavaria, over 50 scientists assembled during the week of 23-28 September 1996 to discuss recent results, both theoretical and observational in nature, on the large scale structure of the Universe. Such a topic is perhaps nowadays far too encompassing, and is essentially all of what we used to call "observational cosmology. " The original philosophy of the organization of this meeting was deliber ated aimed at the younger community and their contributions. As a conse quence, the content of the presentations was refreshingly new, as it should be. In spite of the deficiences caused by the lack of certain key researchers in this field, for one reason or another, the final result was rewarding to all. Although the conference was held in Fall 1996, the contributions contained herein were submitted as late as Spring 1998, thus the content maintains some degree of trendiness. Originally the current volume was to be a "proceedings. " This refers to the usual archival tome that fills one's shelf and is rarely consulted, except to see the canonical group photo, which by the way, we also have. Nevertheless, I wanted something more than that. Although the field is rapidly changing, with so-called facts in a state ofconstant volubility, now is a good time for reflection prior to the commencement ofthe Sloan Survey, presumably the definitive large-scale program of low- to moderate-redshift galaxies in our lifetime. |
![]() ![]() You may like...
The Evolutionary Cosmos - Outside-In…
Richard Westberg, Cal Orey
Hardcover
R1,053
Discovery Miles 10 530
Advances in Quantum Monte Carlo
James B Anderson, Stuart M. Rothstein
Hardcover
R2,781
Discovery Miles 27 810
Advances in Quantum Monte Carlo
Shigenori Tanaka, Stuart M. Rothstein, …
Hardcover
R5,678
Discovery Miles 56 780
One Hundred Years of Gauge Theory…
Silvia De Bianchi, Claus Kiefer
Hardcover
R3,220
Discovery Miles 32 200
|