![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Relativity physics
In recent years, the study of neutron stars and black holes has become increasingly important, and rigorous mathematical analysis needs to be applied in order to understand their basic physics. This book treats the classical problem of gravitational physics within Einstein's theory of general relativity. It presents basic principles and equations needed to describe rotating fluid bodies, as well as black holes in equilibrium. It then goes on to deal with a number of analytically tractable limiting cases, placing particular emphasis on the rigidly rotating disc of dust. The book concludes by considering the general case using powerful numerical methods that are applied to various models, including the classical example of equilibrium figures of constant density. Researchers in general relativity, mathematical physics, and astrophysics will find this a valuable reference book on the topic. A related website containing codes for calculating various figures of equilibrium is available at www.cambridge.org/9780521863834.
The use of Clifford algebras in mathematical physics and engineering has grown rapidly in recent years. Whereas other developments have privileged a geometric approach, the author uses an algebraic approach which can be introduced as a tensor product of quaternion algebras and provides a unified calculus for much of physics. The book proposes a pedagogical introduction to this new calculus, based on quaternions, with applications mainly in special relativity, classical electromagnetism and general relativity. The volume is intended for students, researchers and instructors in physics, applied mathematics and engineering interested in this new quaternionic Clifford calculus.
A graduate level text on a subject which brings together several areas of mathematics and physics: partial differential equations, differential geometry and general relativity. It explains the basics of the theory of partial differential equations in a form accessible to physicists and the basics of general relativity in a form accessible to mathematicians. In recent years the theory of partial differential equations has come to play an ever more important role in research on general relativity. This is partly due to the growth of the field of numerical relativity, stimulated in turn by work on gravitational wave detection, but also due to an increased interest in general relativity among pure mathematicians working in the areas of partial differential equations and Riemannian geometry, who have realized the exceptional richness of the interactions between geometry and analysis which arise. This book provides the background for those wishing to learn about these topics. It treats key themes in general relativity including matter models and symmetry classes and gives an introduction to relevant aspects of the most important classes of partial differential equations, including ordinary differential equations, and material on functional analysis. These elements are brought together to discuss a variety of important examples in the field of mathematical relativity, including asymptotically flat spacetimes, which are used to describe isolated systems, and spatially compact spacetimes, which are of importance in cosmology.
Today physicists and mathematicians throughout the world are feverishly working on one of the most ambitious theories ever proposed: superstring theory. String theory is the key to the Unified Field Theory that eluded Einstein for more than thirty years. Finally, the century-old antagonism between the large and the small -General Relativity and Quantum Theory - is solved. String theory proclaims that all of the wondrous happenings in the universe, from the frantic dancing of subatomic quarks to the majestic swirling of heavenly galaxies, are reflections of one grand physical principle and manifestations of one single entity: microscopically tiny vibrating loops of energy, a billionth of a billionth the size of an atom.
Universally recognized as bringing about a revolutionary
transformation of the notions of space, time, and motion in
physics, Einstein's theory of gravitation, known as "general
relativity," was also a defining event for 20th century philosophy
of science. During the decisive first ten years of the theory's
existence, two main tendencies dominated its philosophical
reception. This book is an extended argument that the path actually
taken, which became logical empiricist philosophy of science,
greatly contributed to the current impasse over realism, whereas
new possibilities are opened in revisiting and reviving the spirit
of the more sophisticated tendency, a cluster of viewpoints broadly
termed transcendental idealism, and furthering its articulation. It
also emerges that Einstein, while paying lip service to the
emerging philosophy of logical empiricism, ended up siding de facto
with the latter tendency.
This compact yet informative Guide presents an accessible route through Special Relativity, taking a modern axiomatic and geometrical approach. It begins by explaining key concepts and introducing Einstein's postulates. The consequences of the postulates - length contraction and time dilation - are unravelled qualitatively and then quantitatively. These strands are then tied together using the mathematical framework of the Lorentz transformation, before applying these ideas to kinematics and dynamics. This volume demonstrates the essential simplicity of the core ideas of Special Relativity, while acknowledging the challenges of developing new intuitions and dealing with the apparent paradoxes that arise. A valuable supplementary resource for intermediate undergraduates, as well as independent learners with some technical background, the Guide includes numerous exercises with hints and notes provided online. It lays the foundations for further study in General Relativity, which is introduced briefly in an appendix.
Neutron stars hold a central place in astrophysics, not only because they are made up of the most extreme states of the condensed matter, but also because they are, along with white dwarfs and black holes, one of the stable configurations that stars reach at the end of stellar evolution. Neutron stars posses the highest rotation rates and strongest magnetic fields among all stars. They radiate prolifically, in high energy electromagnetic radiation and in the radio band. This book is devoted to the selected lectures presented in the 6th NATO-ASI series entitled "The Electromagnetic Spectrum of Neutron Stars" in Marmaris, Turkey, on 7-18 June 2004. This ASI is devoted to the spectral properties of neutron stars. Spectral observations of neutron stars help us to understand the magnetospheric emission processes of isolated radio pulsars and the emission processes of accreting neutron stars. This volume includes spectral information from the neutron stars in broadest sense, namely neutrino and gravitational radiation along with the electromagnetic spectrum. We believe that this volume can serve as graduate level of text including the broad range of properties of neutron stars.
The historic detection of gravitational waves on September 14, 2015, prompted by the highly energetic fusion of two black holes, has made events in the universe "audible" for the first time. This expansion of the scientific sensorium has opened a new chapter in astronomy and already led to, among others, fascinating new insights about the abundance of black holes, the collision of neutron stars, and the origin of heavy chemical elements. The history of this event, which is epochal for physics, is reconstructed in this book, along with a walk-through of the main principles of how the detectors operate and a discussion of how the search for gravitational waves is conducted. The book concludes with an update of the latest detections and developments to date and a brief look into the future of this exciting research field. This book is accessible to non-specialist readers from a general audience and is also an excellent introduction to the topic for undergraduates in physics. Features: Provides an introduction to the historic discovery of gravitational waves Explains the inner workings of the detectors and the search to find the waves hidden in the data Authored by a renowned specialist involved in the ground-breaking discovery Hartmut Grote is a Professor of physics at Cardiff University, UK. His main expertise is in experimental gravitational-wave physics, and he has worked on building and improving gravitational wave detectors for over 20 years. From 2009 to 2017, he was the scientific leader of the British-German gravitational-wave detector: GEO600.
'The book should be an interesting read for advanced students within the field and for experts working in it.'Contemporary PhysicsIn 1887, Michelson and Morley tried to observe in laboratory the 'ether drift' by measuring a small difference in the velocity of two perpendicular light beams. The result of their measurements, however, was much smaller than the classical prediction and interpreted as a 'null result'. This was crucial to stimulate the first pioneering formulations of relativity and, as such, it represents a fundamental step in the history of science. Since then, many repetitions of that original experiment have been performed with better and better sensitivity and the standard conclusion has been always the same: no genuine ether drift has ever been detected. However, in the authors' new scheme, the small irregular residuals observed in laboratory show surprising correlations with the direct observations of the Cosmic Microwave Background (CMB) with satellites in space. This opens the possibility of finally linking the CMB to a fundamental reference frame for relativity, with substantial implications for the interpretation of non-locality in the quantum theory. The importance of the issue would require new dedicated experimental tests and significant improvements in the data analysis. Otherwise, without such more stringent checks, these crucial experiments will remain forever as an enigma for physics and the history of science. The book illustrates the many facets of this research together with historical accounts on some leading scientists involved in these measurements.
Based on a course taught for years at Oxford, this book offers a concise exposition of the central ideas of general relativity. The focus is on the chain of reasoning that leads to the relativistic theory from the analysis of distance and time measurements in the presence of gravity, rather than on the underlying mathematical structure. Includes links to recent developments, including theoretical work and observational evidence, to encourage further study.
2 Homogeneous superconducting state 210 3 Superconducting phases with broken space symmetries 213 4 Flavor asymmetric quark condensates 219 5 Concluding remarks 221 Acknowledgments 222 References 223 Neutral Dense Quark Matter 225 Mei Huang and Igor Shovkovy 1 Introduction 225 2 Local charge neutrality: homogeneous phase 226 3 Global charge neutrality: mixed phase 234 4 Conclusion 238 References 238 Possibility of color magnetic superconductivity 241 Toshitaka Tatsumi, Tomoyuki Maruyama, and Eiji Nakano 1 Introduction 241 2 What is ferromagnetism in quark matter? 243 3 Color magnetic superconductivity 248 4 Chiral symmetry and magnetism 253 5 Summary and Concluding remarks 258 Acknowledgments 260 References 260 Magnetic Fields of Compact Stars with Superconducting Quark Cores 263 David M. Sedrakian, David Blaschke, and Karen M. Shahabasyan 1 Introduction 263 2 Free Energy 265 3 Ginzburg-Landau equations 267 4 Vortex Structure 269 5 Solution of Ginzburg-Landau Equations 271 6 The Magnetic Field Components 273 7 Summary 275 Acknowledgments 275 References 275 Thermal Color-superconducting Fluctuations in Dense Quark Matter 277 D. N.
Gravitational radiation has not been positively detected. Over the past two decades an army of extremely sensitive detectors has been built up, so that today its detection appears inevitable. In the opening chapters of this 1991 book David Blair introduces the concepts of gravitational waves within the context of general relativity. The sources of gravitational radiation for which there is direct observational evidence and those of a more speculative nature are described. He then gives a general introduction to the methods of detection. In the subsequent chapters he has drawn together the leading scientists in the field to give a comprehensive practical and theoretical account of the physics and technology of gravitational wave detection. David Blair has extensive knowledge of the subject and has visited most of the gravitational radiation experiments over the world. He has compiled a book which will be of lasting value to specialists, both the postgraduates and researchers in the field.
1919 hat das Preussische Ministerium fur Wissenschaft, Kunst und Volksbildung die Akte "Einsteins Relativitatstheorie" angelegt. Der Autor, selbst Wissenschaftshistoriker, hat sie 1961 gefunden und zusammen mit anderen inzwischen identifizierten "Einstein"-Akten aus deutschen Archiven als Quellmaterial fur dieses faszinierende Buch gewahlt. Eingeteilt in drei Abschnitte: "Im Kaiserreich"-"In der Weimarer Republik"-"Das dritte Reich" zeichnet das Buch das Einsteinbild nach, zeigt auf, wie der Wissenschaftler immer starker durch die Ereignisse dieser turbulenten Jahre zu einer politischen Figur wurde und tragt Neues zum besseren Verstehen fur Einsteins rigorosen Bruch mit Deutschland bei. Damit fullt der Autor eine wichtige Lucke in der Einsteinliteratur. In der Neuauflage kommt noch ein Abschnitt hinzu, in dem der Autor bisher unbekanntes Material zu den FBI- und CIC-Berichten uber Einsteins angebliche Kontakte zur KPD und Komintern vorlegt. Des weiteren wird Einsteins Mitarbeit in der Volkerbundkommission erstmals in Tiefe behandelt."
In this short book, renowned theoretical physicist and author Carlo Rovelli gives a straightforward introduction to Einstein's General Relativity, our current theory of gravitation. Focusing on conceptual clarity, he derives all the basic results in the simplest way, taking care to explain the physical, philosophical and mathematical ideas at the heart of "the most beautiful of all scientific theories". Some of the main applications of General Relativity are also explored, for example, black holes, gravitational waves and cosmology, and the book concludes with a brief introduction to quantum gravity. Written by an author well known for the clarity of his presentation of scientific ideas, this concise book will appeal to university students looking to improve their understanding of the principal concepts, as well as science-literate readers who are curious about the real theory of General Relativity, at a level beyond a popular science treatment.
This book is the second edition of an excellent undergraduate-level overview of classical and modern physics, intended for students of physics and related subjects, and also perfectly suited for the education of physics teachers. The twelve-chapter book begins with Newton's laws of motion and subsequently covers topics such as thermodynamics and statistical physics, electrodynamics, special and general relativity, quantum mechanics and cosmology , the standard model and quantum chromodynamics. The writing is lucid, and the theoretical discussions are easy to follow for anyone comfortable with standard mathematics. An important addition in this second edition is a set of exercises and problems, distributed throughout the book. Some of the problems aim to complement the text, others to provide readers with additional useful tools for tackling new or more advanced topics. Furthermore, new topics have been added in several chapters; for example, the discovery of extra-solar planets from the wobble of their mother stars, a discussion of the Landauer principle relating information erasure to an increase of entropy, quantum logic, first order quantum corrections to the ideal gas equation of state due to the Fermi-Dirac and Bose-Einstein statistics. Both gravitational lensing and the time-correction in geo-positioning satellites are explained as theoretical applications of special and general relativity. The discovery of gravitational waves, one of the most important achievements of physical sciences, is presented as well. Professional scientists, teachers, and researchers will also want to have this book on their bookshelves, as it provides an excellent refresher on a wide range of topics and serves as an ideal starting point for expanding one's knowledge of new or unfamiliar fields. Readers of this book will not only learn much about physics, they will also learn to love it.
In this XVII Course of the International School of Cosmology and Gravitation devoted to "ADVANCES IN THE INTERPLAY BETWEEN QUANTUM AND GRAVITY PHYSICS" we have considered different aspects of the influence of gravity on quantum systems. In order to achieve this aim, in many lectures, seminars and discussions we have strengthened the interplay between gravity and quantum systems starting from the situation in the early universe based on astrophysical observations, up to the earthly based experiments with atom interferometry for probing the structure of space-time. Thus we have had timely lectures on the quantum field and horizon of a black hole including reviews of the problem of black holes thermodynamics and entropy, quantum information, quantum black holes, quantum evaporation and Hawking radiation, recent advances in stockastic gravity. We have also discussed quantum fluctuations in inflationary universe, quantum effects and reheating after inflation, and superplanckian energies in Hawking radiation. In this regard the subject of spinors in purely affine space-time and Dirac matter according to Weyl in the generalized theory of gravitation were developed . The dualism between space-time and matter has been deeply analyzed in order to see why, for general relativity, this is an obstacle for quantization of the theory. Also canonical Gravity and Mach's principle, torsion and curvature as commutator for Quantum Gravity and Dirac Geometry of real space-time were analysed, together with the problem of 5-Dimensional Projective Unified Field theory and Multidimensional Gravity and Cosmology.
This is a comprehensive textbook for advanced undergraduates and beginning graduate students in physics or astrophysics, developing both the formalism and the physical ideas of special and general relativity in a logical and coherent way. The book is in two parts. Part one focuses on the special theory and begins with the study of relativistic kinematics from three points of view: the physical (the classic gedanken experiments), the algebraic (the Lorentz transformations), and the graphic (the Minkowski diagrams). Part one concludes with chapters on relativistic dynamics and electrodynamics. Part two begins with a chapter introducing differential geometry to set the mathematical background for general relativity. The physical basis for the theory is begun in the chapter on uniform accelerations. Subsequent chapters cover rotation, the electromagnetic field, and material media. A second chapter on differential geometry provides the background for Einstein's gravitational-field equation and Schwarzschild's solution. The physical significance of this solution is examined together with the challenges to the theory that have been successfully met inside the solar system. Other applications follow in the final chapters on astronomy and cosmology: These include black holes, quasars, and gravity waves as well as the relativistic features of an expanding universe ¿ including a section on the inflationary model.
Evidence that Einstein's addition is regulated by the Thomas
precession has come to light, turning the notorious Thomas
precession, previously considered the ugly duckling of special
relativity theory, into the beautiful swan of gyrogroup and
gyrovector space theory, where it has been extended by abstraction
into an automorphism generator, called the "Thomas gyration." The
Thomas gyration, in turn, allows the introduction of vectors into
hyperbolic geometry, where they are called "gyrovectors," in such a
way that Einstein's velocity additions turns out to be a gyrovector
addition. Einstein's addition thus becomes a gyrocommutative,
gyroassociative gyrogroup operation in the same way that ordinary
vector addition is a commutative, associative group operation. Some
gyrogroups of gyrovectors admit scalar multiplication, giving rise
to gyrovector spaces in the same way that some groups of vectors
that admit scalar multiplication give rise to vector spaces.
Furthermore, gyrovector spaces form the setting for hyperbolic
geometry in the same way that vector spaces form the setting for
Euclidean geometry. In particular, the gyrovector space with
gyrovector addition given by Einstein's (Mobius') addition forms
the setting for the Beltrami (Poincare) ball model of hyperbolic
geometry.
A survey of the most recent developments in general relativity and in the theory of the unification of Fundamental Interactions is presented in this book. The theoretical results, the cosmological and astrophysical aspects, the experimental and observational programs are shown in 26 general talks by renowned scientists active in this field.
Today many important directions of research are being pursued more or less independently of each other. These are, for instance, strings and mem branes, induced gravity, embedding of spacetime into a higher dimensional space, the brane world scenario, the quantum theory in curved spaces, Fock Schwinger proper time formalism, parametrized relativistic quantum the ory, quantum gravity, wormholes and the problem of "time machines," spin and supersymmetry, geometric calculus based on Clifford algebra, various interpretations of quantum mechanics including the Everett interpretation, and the recent important approach known as "decoherence." A big problem, as I see it, is that various people thoroughly investigate their narrow field without being aware of certain very close relations to other fields of research. What we need now is not only to see the trees but also the forest. In the present book I intend to do just that: to carry out a first approximation to a synthesis of the related fundamental theories of physics. I sincerely hope that such a book will be useful to physicists. From a certain viewpoint the book could be considered as a course in the oretical physics in which the foundations of all those relevant fundamental theories and concepts are attempted to be thoroughly reviewed. Unsolved problems and paradoxes are pointed out. I show that most of those ap proaches have a common basis in the theory of unconstrained membranes. The very interesting and important concept of membrane space, the tensor calculus in and functional transformations in are discussed.
The 13th Italian Conference on General Relativity and Gravitational Physics was held in Cala Corvino-Monopoli (Bari) from September 21to September 25, 1998. The Conference, which is held every other year in different Italian locations, has brought together, as in the earlier conferences in this series, those scientists who are interested and actively work in all aspects of general relativity, from both the mathematical and the physical points of view: from classical theories of gravitation to quantum gravity, from relativistic astrophysics and cosmology to experiments in gravitation. About 70 participants came from Departments of Astronomy and Astrophysics, Departments of Mathematics and Departments of Experimental and Theoretical Physics from all over the Country; in addition a few Italian scientists working abroad kindly accepted invitations from the Scientific Committee. The good wishes of the University and of the Politecnico di Bari were conveyed by the director of Diparti mento Interuniversitario di Matematica, Prof. Franco Altomare. These proceedings contain the contributions of the two winners of the SIGRAV prizes, the invited talks presented at the Conference and most of the contributed talks. We thank all of our colleagues, who did their best to prepare their manuscripts. The pleasant atmosphere induced by the beauty of the place was greatlyenhanced not only by the participation of so many colleagues, who had lively discussions about science well beyond Conference hours, but also by the feeling of hospitalityextended to the participants by the staff of the Cala Corvino Hotel, where the Conference was held."
This textbook attempts to bridge the gap that exists between the two levels on which relativistic symmetry is usually presented - the level of introductory courses on mechanics and electrodynamics and the level of application in high energy physics and quantum field theory: in both cases, too many other topics are more important and hardly leave time for a deepening of the idea of relativistic symmetry. So after explaining the postulates that lead to the Lorentz transformation and after going through the main points special relativity has to make in classical mechanics and electrodynamics, the authors gradually lead the reader up to a more abstract point of view on relativistic symmetry - always illustrating it by physical examples - until finally motivating and developing Wigner's classification of the unitary irreducible representations of the inhomogeneous Lorentz group. Numerous historical and mathematical asides contribute to conceptual clarification.
Gauge theory of elementary particle physics was first published in 1984 and has become a standard textbook in the subject. This companion volume provides graduate students with problems and solutions, enabling them to learn the calculational techniques necessary to understand the research literature. Several new topics are also included and the presentation is self-contained, making the book suitable even for those not familiar with the main book.
Relativity is the study of motion at speeds approaching the speed of light. At these extremely high speeds particles behave in non-intuitive fashion, and hence the subject suffers from the myth that it is difficult. In order to overcome this barrier Dynamics and relativity approaches the subject from the point of view of more 'standard', classical mechanics, and demonstrates that the theory of relativity is only a natural extension of the more familiar equations. The book gives a full and clear account of the theory of special relativity, with numerous worked examples and exercises, and provides the student with enough knowledge to understand the theory of black holes.
Einstein's Revolution is a textbook on relativity written from a historical-methodological point of view. It can be used as an account of Einstein's physical theory even if the reader has no sympathy with the author's philosophical standpoint, or it can be read for the author's philosophical argument, without the reader having to follow all the details of the physics. The work challenges a distinction made by the Vienna Circle an still influential today: the distinction between "the context of discovery" and "the context of justification." According to the traditional view, the context of discovery calls for no rational reconstruction and belongs, in effect, to psychology, while only latter is subject to a proper logic of appraisal. Against these theses, Zahar shows that there is a logic of discovery and that it plays an important role in the appraisal of theories. |
You may like...
Leveraging Biomedical and Healthcare…
Firas Kobeissy, Kevin Wang, …
Paperback
Cardiovascular Emergencies, An Issue of…
J. Stephen Bohan, Joshua Kosowsky
Hardcover
R1,904
Discovery Miles 19 040
|