![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Relativity physics
Recently, analogies between laboratory physics (e.g. quantum optics and condensed matter) and gravitational/cosmological phenomena such as black holes have attracted an increasing interest. This book contains a series of selected lectures devoted to this new and rapidly developing field. Various analogies connecting (apparently) different areas in physics are presented in order to bridge the gap between them and to provide an alternative point of view.
The present NATO Advanced Study Institute held in CARGESE (Corsica) from Au- gust 8th to August 18th, 1989 was devoted to Hadronic Physics. We tried to give this school a key educational role in this new and rapidly developing interdisciplinary field. We hope that the combination of the lectures and the open atmosphere of scientific exchange and inquiry afforded by the Cargese format has provided a unique educational and scien- tific opportunity for students and has brought together all the relevant concepts and issues for frontier research in this field. We would like to express our gratitude to NATO for its generous financial support which made this Institute possible. We also wish to thank Dr. Luis V. Da Cunha, Director of the Scientific Affairs Division, for his valuable comments and advice. We acknowledge the support of the Institut de Physique Nucleaire et de Physique des Particules (France), the Commissariat a l'Energie Atomique (France), and the U.S. National Science Fundation, for the attribution of travel grants. Our special appreciation is due to Frederique Dykstra for her oustanding organiza- tional work throughout the preparation and duration of this conference It is also a pleasure to thank the Universite de Nice for making available the facilities of the Cargese Scientific Institute. The pictures of the lecturers included in the present volume were kindly provided by one of the participants, Dr.R.Janner.
Based on class-tested notes, this text offers an introduction to Conformal Field Theory with a special emphasis on computational techniques of relevance for String Theory. It introduces Conformal Field Theory at a basic level, Kac-Moody algebras, one-loop partition functions, Superconformal Field Theories, Gepner Models and Boundary Conformal Field Theory. Eventually, the concept of orientifold constructions is explained in detail for the example of the bosonic string. In providing many detailed CFT calculations, this book is ideal for students and scientists intending to become acquainted with CFT techniques relevant for string theory but also for students and non-specialists from related fields.
This excellent textbook offers a unique take on relativity theory, setting it in its historical context. Ideal for those interested in relativity and the history of physics, the book contains a complete account of special relativity that begins with the historical analysis of the reasons that led to a change in our view of space and time. Its aim is to foster a deep understanding of relativistic spacetime and its consequences for Dynamics.
The main feature of this book is the emphasis on "practice." This approach, unusual in the relativistic literature, may be clarified by quoting some problems discussed in the text: - the analysis of rocket acceleration to relativistic velocities - the influence of gravitational fields on the accuracy of time measurements - the operation of optical rotation sensors - the evaluation of the Doppler spectrum produced by the linear (or ro- tional) motion of an antenna or scatterer - the use of the Cerenkov effect in the design of millimeter-wave power generators - the influence of the motion of a plasma on the transmission of electrom- netic waves through this medium. A correct solution of these (and analogous) problems requires the use of re lativistic principles. This remark remains valid even at low velocities, since first-order terms in (v/c) often playa fundamental role in the equations. The "applicational" approach used in the text should be acceptable to space engineers, nuclear engineers, electrical engineers, and more generally, ap plied physicists. Electrical engineers, in particular, are concerned with re lativity by way of the electrodynamics of moving bodies. This discipline is of decisive importance for power engineers, who are confronted with problems such as - the justification of a forcing function (-D /Dt) in the circuit equation of a moving loop - a correct formulation of Maxwell's equations in rotating coordinate systems - the resolution of "sliding contact" paradoxes - a theoretically satisfying analysis of magnetic levitation systems."
Bad Hofgastein who made the very successful Salzburger Abend with indi- nous music from Salzburg possible. Special thanks also to the former director of the Institute of Astronomy in Vienna, Prof. Paul Jackson for his generous private donation. We should not forget our hosts Mr. and Mrs. Winkler and their employees from the hotel who made the stay quite enjoyable. None of us will forget the very last evening, when the staff of kitchen under the le- ership of the cook himself came to offer us as farewell the famous Salzburger Nockerln, a traditional Austrian dessert. Everyone got a lot of scienti?c input during the lectures and the discussions and, to summarize, we all had a spl- did week in Salzburg in the Hotel Winkler. We all hope to come again in 2008 to discuss new results and new perspectives on a high level scienti?c standard in the Gasteinertal. Rudolf Dvorak and Sylvio Ferraz-Mello Celestial Mechanics and Dynamical Astronomy (2005) 92:1-18 (c) Springer 2005 DOI 10. 1007/s10569-005-3314-7 FROM ASTROMETRY TO CELESTIAL MECHANICS: ORBIT DETERMINATION WITH VERY SHORT ARCS (Heinrich K. Eichhorn Memorial Lecture) 1 2 ? ' ANDREA MILANI and ZORAN KNEZEVIC 1 Department of Mathematics, University of Pisa, via Buonarroti 2, 56127 Pisa, Italy, e-mail: milani@dm. unipi. it 2 Astronomical Observatory, Volgina 7, 11160 Belgrade 74, Serbia and Montenegro, e-mail: zoran@aob. bg. ac.
Here it is, in a nutshell: the history of one genius 's most crucial work discoveries that were to change the face of modern physics. In the early 1900s, Albert Einstein formulated two theories that would forever change the landscape of physics: the Special Theory of Relativity and the General Theory of Relativity. Respected American academic Professor Tai Chow tells us the story of these discoveries. He details the basic ideas of Einstein, including his law of gravitation. Deftly employing his inimitable writing style, he goes on to explain the physics behind black holes, weaving into his account an explanation of the structure of the universe and the science of cosmology.
In 1919 the Prussian Ministry of Science, Arts and Culture opened a dossier on "Einstein's Theory of Relativity." It was rediscovered by the author in 1961 and is used in conjunction with numerous other subsequently identified 'Einstein' files as the basis of this fascinating book. In particular, the author carefully scrutinizes Einstein's FBI file from 1950-55 against mostly unpublished material from European including Soviet sources and presents hitherto unknown documentation on Einstein's alleged contacts with the German Communist Party and the Comintern. Siegfried Grundmann's thorough study of Einstein's participation on a committee of the League of Nations, based on archival research in Geneva, is also new. This book outlines Einstein's image in politics and German science policy. It covers the period from his appointment as a researcher in Berlin to his fight abroad against the "boycott of German science" after World War I and his struggle at home against attacks on "Jewish physics" of which he was made a prime target. An important gap in the literature on Einstein is thus filled, contributing much new material toward a better understanding of Einstein's so rigorous break with Germany.
The theory, observations, and applications ofgravitational lensingconstitute one ofthe most rapidly growing branches ofextragalactic astrophysics. The deflection of light from very distant sources by intervening masses provides a unique possibility for the investigation of both background sources and lens mass distributions. Gravitational lensing manifestsitselfmost distinctly through multiply imaged QSOs and the formation of highly elongated im ages of distant galaxies ('arcs') and spectacular ring-like images of extra galactic radio sources. But the effects of gravitational light deflection are not limited to these prominent image configurations; more subtle, since not directly observable, consequences of lensing are the, possibly strong, mag nification of sources, which may permit observation of intrinsically fainter, or more distant, sources than would be visible without these natural tele scopes. Such light deflection can also affect the source counts of QSOs and of other compact extragalactic sources, and can lead to flux variability of sources owing to propagation effects. Trying to summarizethe theory and observationalstatus ofgravitational lensing in a monograph turned out to be a bigger problem than any of the authors anticipated when we started this project at the end of 1987, encour aged by Martin Harwit, who originally approached us. The development in the field has been very rapid during the last four years, both through the ory and through observation, and many sections have been rewritten several times, as the previous versions became out of date.
Like a river, the progress of science has a tendency to run tast or slow. Once the water meets a dam, it may stop for a while, but eventually it will flow over the top and run fast again. In scientific research, a breakthrough to overcome a simile>r barrier is often made by a small number of scientists, or perhaps by a single person of special creativity, extraordinary talent and unusual perseverance. Through such individuals science can proceed in great strides. No one can deny that Professor Kazuo Takayanagi is one of these special individuals who have played a leading role in the field of atomic and molecular physics, as well as space physics. This book is dedicated to Professor Takayanagi on the occasion of his retirement from the Institute of Space and Astronautical Science. Professor Takayanagi was born in 1926 and grew up in Tomakomai in Hokkaido, the northern island of Japan. In his boyhood, he was interested in natural sciences, particularly astronomy. On 5th February, 1943, when he was attending secondary school, a solar eclipse was seen in his town. He organized a group of students from his school to observe the eclipse. He still remembers the scene: it grew so dark during the eclipse that two stars, Vega and Arcturus, could be seen. After graduation from the University of Tokyo in 1948, he entered the graduate school there.
The second Erice course in the school of Particle-Astrophysics was held in May, 1988. The topic choosen was Dark Matter. This is one of the most exciting top ics at the interface of particle physics and astrophysics. It is developing rapidly now due to a coming together not only of the theoretical concepts from the early universe with the theoretical concepts of galaxy formation, but also the coming to gether of the theorists, experimentalists and observers. It is with Dark Matter, the combined interrelated topics of galaxy formation and the generation of large scale structure that we see a confrontation of the exotic ideas from the early universe, such as phase transitions and unification, coming face to face with the realities of traditional observational cosmology. These realities have recently been heightened by the tremendous number of new observations, demonstrating that large scale structure of the universe is far more complex than anybody had suspected. In particular, we now see large scale foam, apparent large scale velocity fields, indicating devations from the Hubble flow, large scales of the order 100 Mpc, and galaxy formation occurring at high red shifts much greater than unity. We also see an apparent correlation of clusters of galaxies that may even exceed the c- relation of galaxies despite their being on much larger scales with lower average densities."
The Evolution of Complexity is addressed to a broad audience of academics and researchers from different disciplines, who are interested in the picture of our world emerging from the new sciences of complexity. This book reviews the new concepts proposed by the diverse theories of evolution, self-organisation, general systems, cybernetics, and the complex adaptive systems' approach pioneered by the Santa Fe institute. The thread which holds everything together is the growth of complexity during the history of the universe: from elementary particles, via atoms, molecules, living cells, multicellular organisms, plants, and animals to human beings, and societies. The different sections of the book discuss the foundations and philosophy of complexity evolution, its mathematical and computer models, its explanation of self-organising and living systems, the insights it provides into the origin of mind, language and culture, and its practical applications in areas such as management and system design.
REFLECTIONS ON SPACETIME - FOUNDATIONS, PHILOSOPHY AND HISTORY During the academic year 1992/93, an interdisciplinary research group constituted itself at the Zentrum fUr interdisziplinare Forschung (ZiF) in Bielefeld, Germany, under the title 'Semantical Aspects of Spacetime Theories', in which philosophers and physicists worked on topics in the interpretation and history of relativity theory. The present issue consists of contributions resulting from material presented and discussed in the group during the course of that year. The scope of the papers ranges from rather specialised issues arising from general relativity such as the problem of referential indeterminacy, to foundational questions regarding spacetime in the work of Carnap, Weyl and Hilbert. It is well known that the General Theory of Relativity (GTR) admits spacetime models which are 'exotic' in the sense that observers could travel into their own past. This poses a number of problems for the physical interpretation of GTR which are also relevant in the philosophy of spacetime. It is not enough to exclude these exotic models simply by stating that we live in a non-exotic universe, because it might be possible to "operate time machines" by actively changing the topology of the future part of spacetime. In his contribution, Earman first reviews the attempts of physicists to prove "chronology protection theorems" (CPTs) which exclude the operation of time machines under reasonable assumptions.
This monograph presents a self contained mathematical treatment of the initial value problem for shock wave solutions of the Einstein equations in General Relativity. It has a clearly outlined goal: proving a certain local existence theorem. Concluding remarks are added and commentary is provided throughout. The author is a well regarded expert in this area.
An international conference entitled "Zdenek Kopal's Binary Star Legacy" was held on the occasion of the late Professor Kopal's 90th birthday in his home town of Litomy l/Czech Republic and dedicated to the memory of one of the leading astronomers of the 20th century. Professor Kopal, who devoted 60 years of his scientific life to the exploration of close binary systems, initiated a breakthrough in this field with his description of binary components as non-spherical stars deformed by gravity, with surfaces following Roche equipotentials. Such knowledge triggered the development of new branches of astrophysics dealing with the structure and evolution of close binaries and the interaction effects displayed by exciting objects such as cataclysmic variables, symbiotic stars or X-ray binaries. Contributions to this conference included praise of the achievements of a great astronomer and personal reminiscences brought forward by Kopal's former students and colleagues, and reflected the state of the art of the dynamically evolving field of binary research, which owes so much to the pioneering work of Zdenek Kopal."
The accretion process is thought to play a key role in the Universe. This book explains, in a form intelligible to graduate students, its relation to the formation of new stars, to the energy release in compact objects and to the formation of black holes. The monograph describes how accretion processes are related to the presence of jets in stellar objects and active galactic nuclei and to jet formation. The authors treat theoretical work as well as current observational facts. This volume of the highly esteemed Les Houches series is meant as an advanced text that can serve to attract students to exciting new research work in astrophysics.
The lectures that four authors present in this volume investigate core topics related to the accelerated expansion of the Universe. Accelerated expansion occured in the ?36 very early Universe - an exponential expansion in the in ationary period 10 s after the Big Bang. This well-established theoretical concept had rst been p- posed in 1980 by Alan Guth to account for the homogeneity and isotropy of the observable universe, and simultaneously by Alexei Starobinski, and has since then been developed by many authors in great theoretical detail. An accelerated expansion of the late Universe at redshifts z< 1 has been disc- ered in 1998; the expansion is not slowing down under the in uence of gravity, but is instead accelerating due to some uniformly distributed, gravitationally repulsive substance accounting for more than 70% of the mass-energy content of the U- verse, which is now known as dark energy. Its most common interpretation today is given in terms of the so-called CDM model with a cosmological constant .
This volume is composed of extensive and detailed notes from the lectures given at the 40th Karpacz Winter School. This school focussed on quantum gravity phenomenology with emphasis on its relation to observational astrophysics and cosmology. These notes have been carefully edited with the aim to give advanced students and young researchers a balanced and accessible introduction to a rather heavily mathematical subject.
This volume consists of papers developed from a joint ACE/ISSI symposium at the occasion of the eightieth birthday of Johannes Geiss. The symposium explored insights into the composition of solar-system and galactic matter that have been brought about by recent space missions, ground-based studies, and theoretical advances. Coverage includes linking primordial to solar composition, planetary samples, solar sources and fractionation processes, and interstellar gas and Cosmic rays.
Held December 16-919, 1999, this proceedings is derived from the Global Foundation Inc.'s Orbis Scientiae 1999. Topics include: cosmological parameters, unifying elementary particle physics, cosmology, superstrings, and black holes.
In these lectures, I have discussed a number of basic concepts that provide the necessary background to the current studies of star formation. A ?rst partwas dedicatedto illustrate the conceptofa protostar, discussing con- tions and propertiesof the collapseof a molecular core. A secondpart deals with circumstellardisks. Disks areimportantnot only to the processofstar formation itself, but also because they are in all probability the site where planets form. The age range of pre-main-sequence stars coincides with the timescales for the formation of very large planetesimals, the building blocks of planets. Studies ofdisk properties in pre-main-sequencestars ofdi?erent age, located in star-forming regions of di?erent properties, may shed light on the characteristics of planet formation processes. ISO observations can provide important (in some cases, unique) inf- mation on the various stages of the star and planet formation. I have illustrated in detail some examples, when, to my knowledge, ISO data had been reduced and analyzed. Many other programs exist, and will certainly contribute to our understanding of star formation in the near future
This thoroughly revised 5th edition of Zeh's classic text investigates irreversible phenomena and their foundation in classical, quantum and cosmological settings. It includes new sections on the meaning of probabilities in a cosmological context, irreversible aspects of quantum computers, and various consequences of the expansion of the Universe. In particular, the book offers an analysis of the physical concept of time.
Causal relations, and with them the underlying null cone or conformal structure, form a basic ingredient in all general analytical studies of asymptotically flat space-time. The present book reviews these aspects from the analytical, geometrical and numerical points of view. Care has been taken to present the material in a way that will also be accessible to postgraduate students and nonspecialist reseachers from related fields.
This book is written for theoretical and mathematical physicists and mat- maticians interested in recent developments in complex general relativity and their application to classical and quantum gravity. Calculations are presented by paying attention to those details normally omitted in research papers, for pedagogical r- sons. Familiarity with fibre-bundle theory is certainly helpful, but in many cases I only rely on two-spinor calculus and conformally invariant concepts in gravitational physics. The key concepts the book is devoted to are complex manifolds, spinor techniques, conformal gravity, ?-planes, ?-surfaces, Penrose transform, complex 3 1 - - space-time models with non-vanishing torsion, spin- fields and spin- potentials. 2 2 Problems have been inserted at the end, to help the reader to check his und- standing of these topics. Thus, I can find at least four reasons for writing yet another book on spinor and twistor methods in general relativity: (i) to write a textbook useful to - ginning graduate students and research workers, where two-component spinor c- culus is the unifying mathematical language.
The Joint European and National Astronomical Meeting (JENAM) of 2002, was held in Porto - Portugal (2-7 September 2002), corresponding to the I ph Meeting of the European Astronomical Society (EAS) and the IJ! En- contra Nacional de Astronomia e Astroftsica (12ENAA) of the Sociedade Portuguesa de Astronomia (SPA). Portugal has a small and young community of researchers in Astronomy. This meeting have had an important role in marking the beginning of what we expect to be a new phase for Astronomy in Portugal. The fact that we have chosen to address '"the future" reflects this will of the Portuguese com- munity to share and discuss our commitment for the next decades with our colleagues. The meeting, titled "The Unsolved Universe: Challenges for the Fu- ture", aimed at discussing some of the major research programmes and objec- tives for the next decades. The scientific programme included the plenary ses- sions (invited reviews and highlight talks), whose contributions are published in this book, and several workshops on more specific topics. |
You may like...
Intro to Python for Computer Science and…
Paul Deitel
Paperback
Kirstenbosch - A Visitor's Guide
Colin Paterson-Jones, John Winter
Paperback
Education studies for initial teacher…
Labby Ramrathan, Lesley Le Grange, …
Paperback
Herbal, Bio-nutrient and Drug Titration…
Anika Niambi Al-Shura
Paperback
R3,269
Discovery Miles 32 690
|