![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Relativity physics
This book contains the expanded lecture notes of the 32nd Saas-Fee Advanced Course. The three contributions present the central themes in modern research on the cold universe, ranging from cold objects at large distances to the physics of dust in cold clouds.
This thesis reports on the search for dark matter in data taken with the ATLAS detector at CERN's Large Hadron Collider (LHC). The identification of dark matter and the determination of its properties are among the highest priorities in elementary particle physics and cosmology. The most likely candidate, a weakly interacting massive particle, could be produced in the high energy proton-proton collisions at the LHC. The analysis presented here is unique in looking for dark matter produced together with a Higgs boson that decays into its dominant decay mode, a pair of b quarks. If dark matter were seen in this mode, we would learn directly about the production mechanism because of the presence of the Higgs boson. This thesis develops the search technique and presents the most stringent production limit to date.
The composition of the most remote objects brought into view by the Hubble telescope can no longer be reconciled with the nucleogenesis of standard cosmology and the alternative explanation, in terms of the Λ-Cold-Dark-Matter model, has no recognizable chemical basis. A more rational scheme, based on the chemistry and periodicity of atomic matter, opens up an exciting new interpretation of the cosmos in terms of projective geometry and general relativity. The response of atomic structure to environmental pressure predicts non-Doppler cosmical redshifts and equilibrium nucleogenesis by α--particle addition, in accord with observed periodic variation of nuclear abundance. Inferred cosmic self similarity elucidates the Bode -Titius law, general commensurability in the solar system and the occurrence of quantum phenomena on a cosmic scale. The generalized periodic function involves both matter and anti-matter in an involuted mapping to a closed projective plane. This topology ensures the same symmetrical balance in a chiral universe, wrapped around an achiral vacuum interface, without singularities. A new cosmology emerges, based on the theory of projective relativ-ity, presented here as a translation of Veblen's original German text. Not only does it provide a unification of gravity, electromagnetism and quantum theory, through gauge invariance, but also supports the solution of the gravitational field equations, obtained by Godel for a rotating universe. The appearance of an Einstein-Rosen bridge as outlet from a black hole, into conjugate anti-space, accounts for globular clusters, quasars, cosmic radiation, γ-ray bursters, pulsars, radio sources and other re-gions of plasma activity. The effects of a multiply-connected space-time manifold on observa-tions in an Euclidean tangent space are unpredictable and a complete re-assessment of the size and structure of the universe is indicated. The target readership includes scientists, as well as non-scientists - everybody with a scientific or philosophical interest in cosmology and, especially those cosmologists and mathematicians with the ability to recast the crude ideas presented here into appropriate mathematical models.
This book presents a collection of focused review papers on the advances in topics in modern astronomy, astrophysics, cosmology and planetary science. The chapters are written by expert members of an EU-funded ERASMUS+ program of strategic partnership between several European institutes. The 13 reviews comprise the topics: Space debris, optical measurements Meteors, light from comets and asteroids Extrasolar enigmas: from disintegrating exoplanets to exo-asteroids Physical conditions and chemical abundances in photoionized nebulae from optical spectra Observational Constraints on the Common Envelope Phase A modern guide to quantitative spectroscopy of massive OB stars Explosion mechanisms of core-collapse supernovae and their observational signatures Low-mass and substellar eclipsing binaries in stellar clusters Globular cluster systems and Galaxy Formation Hot atmospheres of galaxies, groups, and clusters of galaxies The establishment of the Standard Cosmological Model through observations Exploiting solar visible-range observations by inversion techniques: from flows in the solar subsurface to a flaring atmosphere Starburst galaxies The book is intended for the general astronomical community as well as for advanced students who could use it as a guideline, inspiration and overview for their future careers in astronomy.
This volume addresses the history and epistemology of early modern cosmology. The authors reconstruct the development of cosmological ideas in the age of 'scientific revolution' from Copernicus to Leibniz, taking into account the growth of a unified celestial-and-terrestrial mechanics. The volume investigates how, in the rise of the new science, cosmology displayed deep and multifaceted interrelations between scientific notions (stemming from mechanics, mathematics, geometry, astronomy) and philosophical concepts. These were employed to frame a general picture of the universe, as well as to criticize and interpret scientific notions and observational data. This interdisciplinary work reconstructs a conceptual web pervaded by various intellectual attitudes and drives. It presents an historical-epistemological unified itinerary which includes Copernicus, Kepler, Galileo, Descartes, Huygens, Newton and Leibniz. For each of the scientists and philosophers, a presentation and commentary is made of their cosmological views, and where relevant, outlines of their most relevant physical concepts are given. Furthermore, the authors highlight the philosophical and epistemological implications of their scientific works. This work is helpful both as a synthetic overview of early modern cosmology, and an analytical exposition of the elements that were intertwined in early-modern cosmology. This book addresses historians, philosophers, and scientists and can also be used as a research source book by post-graduate students in epistemology, history of science and history of philosophy.
These proceedings celebrate the achievements of the great astronomer Zdenek Kopal, and reflect the state of the art of the dynamically evolving field of binary research, which owes so much to Kopal's pioneering work.
Special Relativity provides the foundations of our knowledge of space and time. Without it, our understanding of the world, and its place in the universe, would be unthinkable. This book gives a concise, elementary, yet exceptionally modern, introduction to special relativity. It is a gentle yet serious 'first encounter', in that it conveys a true understanding rather than purely reports the basic facts. Only very elementary mathematical knowledge is needed to master it (basic high-school maths), yet it will leave the reader with a sound understanding of the subject. Special Relativity: A First Encounter starts with a broad historical introduction and motivation of the basic notions. The central chapters are dedicated to special relativity, mainly following Einstein's historical route. Later chapters turn to various applications in all parts of physics and everyday life. Unlike other books on the subject, the current status of the experimental foundations of special relativity is accurately reported and the experiments explained. This book will appeal to anyone wanting a gentle introduction to the subject, as well as those who are interested in seriously learning about Einstein's legacy.
in this work, we must therefore assume several abstract concepts that hardly need defending at this point in the history of mechanics. Most notably, these include the concept of the point particle and the concept of the inertial observer. The study of the relativistic particle system is undertaken here by means of a particular classical theory, which also exists on the quantum level, and which is especially suited to the many-body system in flat spacetime. In its fundamental postulates, the theory may be consid ered to be primarily the work of E.C.G. Stiickelberg in the 1940's, and of L.P. Horwitz and C. Piron in the 1970's, who may be said to have provided the generalization of Stiickelberg's theory to the many-body system. The references for these works may be found in Chapter 1. The theory itself may be legitimately called off-shell Hamiltonian dynamics, parameterized relativistic mechanics, or even classical event dynamics. The most important feature of the theory is probably the use of an invariant world time parameter, usually denoted T, which provides an evolution time for the system in such as way as to allow manifest co variance within a Hamiltonian formalism. In general, this parameter is neither a Lorentz-frame time, nor the proper time of the particles in the system."
2 Homogeneous superconducting state 210 3 Superconducting phases with broken space symmetries 213 4 Flavor asymmetric quark condensates 219 5 Concluding remarks 221 Acknowledgments 222 References 223 Neutral Dense Quark Matter 225 Mei Huang and Igor Shovkovy 1 Introduction 225 2 Local charge neutrality: homogeneous phase 226 3 Global charge neutrality: mixed phase 234 4 Conclusion 238 References 238 Possibility of color magnetic superconductivity 241 Toshitaka Tatsumi, Tomoyuki Maruyama, and Eiji Nakano 1 Introduction 241 2 What is ferromagnetism in quark matter? 243 3 Color magnetic superconductivity 248 4 Chiral symmetry and magnetism 253 5 Summary and Concluding remarks 258 Acknowledgments 260 References 260 Magnetic Fields of Compact Stars with Superconducting Quark Cores 263 David M. Sedrakian, David Blaschke, and Karen M. Shahabasyan 1 Introduction 263 2 Free Energy 265 3 Ginzburg-Landau equations 267 4 Vortex Structure 269 5 Solution of Ginzburg-Landau Equations 271 6 The Magnetic Field Components 273 7 Summary 275 Acknowledgments 275 References 275 Thermal Color-superconducting Fluctuations in Dense Quark Matter 277 D. N.
This volume introduces the application of two-component spinor calculus and fibre-bundle theory to complex general relativity. A review of basic and important topics is presented, such as two-component spinor calculus, conformal gravity, twistor spaces for Minkowski space-time and for curved space-time, Penrose transform for gravitation, the global theory of the Dirac operator in Riemannian four-manifolds, various definitions of twistors in curved space-time and the recent attempt by Penrose to define twistors as spin-3/2 charges in Ricci-flat space-time. Original results include some geometrical properties of complex space-times with nonvanishing torsion, the Dirac operator with locally supersymmetric boundary conditions, the application of spin-lowering and spin-raising operators to elliptic boundary value problems, and the Dirac and Rarita--Schwinger forms of spin-3/2 potentials applied in real Riemannian four-manifolds with boundary. This book is written for students and research workers interested in classical gravity, quantum gravity and geometrical methods in field theory. It can also be recommended as a supplementary graduate textbook.
Papers from the Discussion Conference on Recent Advances in General Relativity, held at the U. of Pittsburgh, May 1990, survey the interacting fields of classical general relativity, astrophysics, and quantum gravity. Some of the remarks made following the invited papers are also included. The conference also included three workshops on classical g
This thesis focuses on understanding the growth and formation mechanism of supermassive black holes (SMBHs), an issue it addresses by investigating the dense interstellar medium that is assumed to be a crucial component of the fuel for SMBHs. The thesis also offers unique guidance on using the Atacama Large Millimeter/submillimeter Array (ALMA) in active galactic nuclei (AGN) research. The author presents the three major findings regarding SMBH formation and growth: (1) The development of a new diagnostic method for the energy sources in galaxies based on submillimeter spectroscopy, which allows identification of accreting SMBHs even in obscured environments, (2) the discovery that the circumnuclear dense gas disk (CND), with a typical size of a few tens of parsecs, which plays a crucial role in governing the growth of SMBHs, and (3) the discovery that the mass transfer budget from the CND to the central SMBHs can be quantitatively understood with a theoretical model incorporating the circumnuclear starburst as a driver of mass transfer. The thesis skillfully reviews these three findings, which have greatly improved our understanding of the growth mechanism of SMBHs.
New Edition: Introductory Quantum Physics and Relativity (2nd Edition)This book is based on the lecture courses taught by Dunningham and Vedral at the University of Leeds. The book contains all the necessary material for quantum physics and relativity in the first two years of a typical physics degree course. The choice of topics complies fully with the Institute of Physics guidelines, but the coverage also includes more interesting and up-to-date applications, such as Bose condensation and quantum teleportation.
This volume guides early-career researchers through recent breakthroughs in mathematics and physics as related to general relativity. Chapters are based on courses and lectures given at the July 2019 Domoschool, International Alpine School in Mathematics and Physics, held in Domodossola, Italy, which was titled "Einstein Equations: Physical and Mathematical Aspects of General Relativity". Structured in two parts, the first features four courses from prominent experts on topics such as local energy in general relativity, geometry and analysis in black hole spacetimes, and antimatter gravity. The second part features a variety of papers based on talks given at the summer school, including topics like: Quantum ergosphere General relativistic Poynting-Robertson effect modelling Numerical relativity Length-contraction in curved spacetime Classicality from an inhomogeneous universe Einstein Equations: Local Energy, Self-Force, and Fields in General Relativity will be a valuable resource for students and researchers in mathematics and physicists interested in exploring how their disciplines connect to general relativity.
After about a century of success, physicists feel the need to probe the limits of validity of special-relativity base theories. This book is the outcome of a special seminar held on this topic. The authors gather in a single volume an extensive collection of introductions and reviews of the various facets involved, and also includes detailed discussion of philosophical and historical aspects.
This book provides an accessible, yet thorough, introduction to special and general relativity, crafted and class-tested over many years of teaching. Suitable for advanced undergraduate and graduate students, this book provides clear descriptions of how to approach the mathematics and physics involved. It is also contains the latest exciting developments in the field, including dark energy, gravitational waves, and frame dragging. The table of contents has been carefully developed in consultation with a large number of instructors teaching courses worldwide, to ensure its wide applicability to modules on relativity and gravitation. Features: A clear, accessible writing style, presenting a sophisticated approach to the subject, that remains suitable for advanced undergraduate students and above Class-tested over many years To be accompanied by a partner volume on 'Advanced Topics' for students to further extend their learning
This book provides an introduction to classical celestial mechanics. It is based on lectures delivered by the authors over many years at both Padua University (MC) and V.N. Karazin Kharkiv National University (EB). The book aims to provide a mathematical description of the gravitational interaction of celestial bodies. The approach to the problem is purely formal. It allows the authors to write equations of motion and solve them to the greatest degree possible, either exactly or by approximate techniques, when there is no other way. The results obtained provide predictions that can be compared with the observations. Five chapters are supplemented by appendices that review certain mathematical tools, deepen some questions (so as not to interrupt the logic of the mainframe with heavy technicalities), give some examples, and provide an overview of special functions useful here, as well as in many other fields of physics. The authors also present the original investigation of torus potential. This book is aimed at senior undergraduate students of physics or astrophysics, as well as graduate students undertaking a master's degree or Ph.D.
This proceedings volume gathers selected, revised papers presented at the X International Meeting on Lorentzian Geometry (GeLoCor 2021), virtually held at the University of Cordoba, Spain, on February 1-5, 2021. It includes surveys describing the state-of-the-art in specific areas, and a selection of the most relevant results presented at the conference. Taken together, the papers offer an invaluable introduction to key topics discussed at the conference and an overview of the main techniques in use today. This volume also gathers extended revisions of key studies in this field. Bringing new results and examples, these unique contributions offer new perspectives to the original problems and, in most cases, extend and reinforce the robustness of previous findings. Hosted every two years since 2001, the International Meeting on Lorentzian Geometry has become one of the main events bringing together the leading experts on Lorentzian geometry. In this volume, the reader will find studies on spatial and null hypersurfaces, low regularity in general relativity, conformal structures, Lorentz-Finsler spacetimes, and more. Given its scope, the book will be of interest to both young and experienced mathematicians and physicists whose research involves general relativity and semi-Riemannian geometry.
After an extensive introduction to the asymptotic safety approach to quantum gravity, this thesis explains recent key advances reported in four influential papers. Firstly, two exact solutions to the reconstruction problem (how to recover a bare action from the effective average action) are provided. Secondly, the fundamental requirement of background independence in quantum gravity is successfully implemented. Working within the derivative expansion of conformally reduced gravity, the notion of compatibility is developed, uncovering the underlying reasons for background dependence generically forbidding fixed points in such models. Thirdly, in order to understand the true nature of fixed-point solutions, one needs to study their asymptotic behaviour. The author carefully explains how to find the asymptotic form of fixed point solutions within the f(R) approximation. Finally, the key findings are summarised and useful extensions of the work are identified. The thesis finishes by considering the need to incorporate matter into the formalism in a compatible way and touches upon potential opportunities to test asymptotic safety in the future.
This treatment of differential geometry and the mathematics required for general relativity makes the subject of this book accessible for the first time to anyone familiar with elementary calculus in one variable and with a knowledge of some vector algebra. The emphasis throughout is on the geometry of the mathematics, which is greatly enhanced by the many illustrations presenting figures of three and more dimensions as closely as book form will allow. The imaginative text is a major contribution to expounding the subject of differential geometry as applied to studies in relativity, and will prove of interest to a large number of mathematicians and physicists. Review from L'Enseignement Mathématique |
![]() ![]() You may like...
Research for Medical Imaging and…
Euclid Seeram, Robert Davidson, …
Hardcover
R3,972
Discovery Miles 39 720
|