![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Environmental engineering & technology > Sanitary & municipal engineering
Membrane-Based Hybrid Processes for Wastewater Treatment analyzes and discusses the potential of membrane-based hybrid processes for the treatment of complex industrial wastewater, the recovery of valuable compounds, and water reutilization. In addition, recent and future trends in membrane technology are highlighted. Industrial wastewater contains a large variety of compounds, such as heavy metals, salts and nutrients, which makes its treatment challenging. Thus, the use of conventional water treatment methods is not always effective. Membrane-based hybrid processes have emerged as a promising technology to treat complex industrial wastewater.
The Future of Effluent Treatment Plants: Biological Treatment Systems is an advanced and updated version of existing biological technologies that includes their limitations, challenges, and potential application to remove chemical oxygen demand (COD), refractory chemical oxygen demand, biochemical oxygen demand (BOD), color removal and environmental pollutants through advancements in microbial bioremediation. The book introduces new trends and advances in environmental bioremediation with thorough discussions of recent developments. In addition, it illustrates that the application of these new emerging innovative technologies can lead to energy savings and resource recovery. The importance of respiration, nitrogen mineralization, nitrification, denitrification and biological phosphorus removal processes in the development of a fruitful and applicable solution for the removal of toxic pollutants from wastewater treatment plants is highlighted. Equally important is the knowledge and theoretical modeling of water movement through wastewater ecosystems. Finally, emphasis is given to the function of constructed wetlands and activated sludge processes.
Wastewater Treatment Reactors: Microbial Community Structure analyzes microbial community structure in relation to changes in physico-chemical parameters, the gene content (metagenome) or gene expression (metatranscriptome) of microbial communities in relation to changes in physico-chemical parameters, physiological aspects of microbial communities, enrichment cultures or pure cultures of key species in relation to changes in physico-chemical parameters, and modeling of potential consequences of changes in microbial community structure or function for higher trophic levels in a given habitat. As several studies have been carried out to understand bulking phenomena and the importance of environmental factors on sludge settling characteristics, which are thought to be strongly influenced by flocculation, sludge bulking, foaming and rising, this book is an ideal resource on the topics covered.
New Trends in Removal of Heavy Metals from Industrial Wastewater covers the applicable technologies relating to the removal of heavy metals from wastewater and new and emerging trends in the field, both at the laboratory and industrial scale. Sections explore new environmentally friendly technologies, the principles of sustainable development, the main factors contributing to heavy metal removal from wastewater, methods and procedures, materials (especially low-cost materials originated from industrial and agricultural waste), management of wastewater containing heavy metals and wastewater valorization, recycling, environmental impact, and wastewater policies for post heavy metal removal. This book is an advanced and updated vision of existing heavy metal removal technologies with their limitations and challenges and their potential application to remove heavy metals/environmental pollutants through advancements in bioremediation. Finally, sections also cover new trends and advances in environmental bioremediation with recent developments in this field by an application of chemical/biochemical and environmental biotechnology.
Sustainable Technologies for Textile Wastewater Treatments takes on this complex and environmentally crucial issue by providing comprehensive coverage on new technologies and practices. Sections provide technical detail and instruction on cutting-edge technologies, including innovative industrial uses of nanotechnology and waste biomass. In addition, case studies are provided on different textile wastewater treatment plants, hence showing their full practical context. Specific areas of discussion include zero liquid discharge, nanomaterials, adsorption, and advanced oxidization processes (AOP). Appropriate case studies from textile wastewater treatment plants are included to help illustrate key points. Other sections cover the cost of these methods, before highlighting effective low-cost options. This book will be of use to researchers with an interest in textile sustainability or wastewater treatment, although sustainability managers or lifecycle assessment professionals in the textiles and fashion sector will find the book very impactful to their work.
This volume considers how Greco-Roman authorities manipulated water on the practical, technological, and political levels. Water was controlled and harnessed with legal oversight and civic infrastructure (e.g., aqueducts). Waterways were 'improved' and made accessible by harbors, canals, and lighthouses. The Mediterranean Sea and Outer Ocean (and numerous rivers) were mastered by navigation for warfare, exploration, settlement, maritime trade, and the exploitation of marine resources (such as fishing). These waterways were also a robust source of propaganda on coins, public monuments, and poetic encomia as governments vied to establish, maintain, or spread their identities and predominance. This first complete study of the ancient scientific and public engagement with water makes a major contribution to classics, geography, hydrology and the history of science alike. In the ancient Mediterranean Basin, water was a powerful tool of human endeavor, employed for industry, trade, hunting and fishing, and as an element in luxurious aesthetic installations (public and private fountains). The relationship was complex and pervasive, touching on every aspect of human life, from mundane acts of collecting water for the household, to private and public issues of comfort and health (latrines, sewers, baths), to the identity of the state writ large.
Handbook of Advanced Approaches towards Pollution Prevention and Control, Volume One: Conventional and Innovative Technology, and Assessment Techniques for Pollution Prevention and Control condenses all relevant information on pollution prevention and control in a single source. This handbook (Volume One of Two) covers the principles of pollution prevention and control technologies, recent advances in pollution prevention, control technologies and their sustainability, modernization in pollution prevention, and control technologies for future and next generation pollution prevention. This book is an indispensable resource for researchers and academic staff in chemical and process engineering, safety engineering, environmental engineering, biotechnology and materials engineering.
Handbook of Advanced Approaches towards Pollution Prevention and Control, Volume Two: Legislative Measures and Sustainability for Pollution Prevention and Control condenses all relevant information on pollution prevention and control in a single source. This handbook (Volume Two of Two) covers the principals of pollution prevention and control technologies, recent advances in pollution prevention, control technologies and their sustainability, modernization in pollution prevention and control technologies for future and next generation of pollution prevention and control technologies. The book is an indispensable resource for researchers and academic staff in chemical and process engineering, safety engineering, environmental engineering, biotechnology, and materials engineering.
The Microbiology of Nuclear Waste Disposal is a state-of-the-art reference featuring contributions focusing on the impact of microbes on the safe long-term disposal of nuclear waste. This book is the first to cover this important emerging topic, and is written for a wide audience encompassing regulators, implementers, academics, and other stakeholders. The book is also of interest to those working on the wider exploitation of the subsurface, such as bioremediation, carbon capture and storage, geothermal energy, and water quality. Planning for suitable facilities in the U.S., Europe, and Asia has been based mainly on knowledge from the geological and physical sciences. However, recent studies have shown that microbial life can proliferate in the inhospitable environments associated with radioactive waste disposal, and can control the long-term fate of nuclear materials. This can have beneficial and damaging impacts, which need to be quantified.
Management of Concentrate from Desalination Plants provides an overview of the alternatives for managing concentrate generated by brackish water and seawater desalination plants, as well as site-specific factors involved in the selection of the most viable alternative for a given project, and the environmental permitting requirements and studies associated with their implementation. The book focuses on widely used alternatives for disposal of concentrate, including discharge to surface water bodies; disposal to the wastewater collection system; deep well injection; land application; evaporation; and zero liquid discharge. Direct discharge through new outfall; discharge through existing wastewater treatment plant outfall; and co-disposal with the cooling water of existing coastal power plant are thoroughly described, and design guidance for the use of these concentrate disposal alternatives is presented with engineers and practitioners in the field of desalination in mind. Key advantages, disadvantages, environmental impact issues, and possible solutions are presented for each discharge alternative. Easy-to-use graphs depicting construction costs as a function of concentrate flow rate are provided for all key concentrate management alternatives.
Nuclear Corrosion: Research, Progress and Challenges, part of the "Green Book" series of the EFC, builds upon the foundations of the very first book published in this series in 1989 ("Number 1 - Corrosion in the Nuclear Industry"). This newest volume provides an overview on state-of-the-art research in some of the most important areas of nuclear corrosion. Chapters covered include aging phenomena in light water reactors, reprocessing plants, nuclear waste disposal, and supercritical water and liquid metal systems. This book will be a vital resource for both researchers and engineers working within the nuclear field in both academic and industrial environments.
Environmental problems caused by the increase of pollutant loads discharged into natural water bodies requires the formation of a framework for regulation and control. This framework needs to be based on scientific results that relate pollutant discharge with changes in water quality. The results of these studies allow the industry to apply more efficient methods of controlling and treating waste loads, and water authorities to enforce appropriate regulations regarding this matter. Water pollution problems are essentially interdisciplinary. Engineers and scientists working in this field must be familiar with a wide range of issues including the physical processes of mixing and dilution, chemical and biological processes, mathematical modelling, data acquisition and measurement, to name but a few. In view of the scarcity of available data, it is important that experiences are shared on an international basis. Thus, a continuous exchange of information between scientists from different countries is essential. Papers presented at Water Pollution 2020, the 15th International Conference in the series of Monitoring, Modelling and Management of Water Pollution, are contained in this volume and highlight research works from scientists, managers and academics from different areas of water contamination.
The deterioration of water quality and unavailability of drinkable water are pressing challenges worldwide. The removal of toxic organic and inorganic pollutants from water is vital for a clean environment, as a response to water scarcity. Adsorption-based water technologies are among the most widely used because of their high efficiency and low cost, without relying on a complex infrastructure. In recent years, carbon nanomaterials (CNMs), such as graphene and derivatives, carbon nanotubes, carbon nanofibers, nanoporous carbon, fullerenes, graphitic carbon nitride, and nanodiamonds have been extensively exploited as adsorbents due to their extraordinary surface properties, ease of modification, large surface area, controlled structural varieties, high chemical stability, porosity, low density, ease of regeneration, and reusability. This book provides a thorough overview of the state of the art in carbon nanomaterials as they are used for adsorption applications in water purifications, as well as addressing their toxicological challenges. This volume primarily explores the fundamentals of adsorption, its mechanical aspects, synthesis and properties of CNMs, and adsorption performances of CNMs and their nanocomposites with organic and inorganic materials. Structural engineering and activation processes produce materials with enhanced adsorptive properties and separation efficiencies. Furthermore, the formation of CNMs with 2D and 3D macro-and microstructures and high porosities is a potential approach to improve adsorption performances and extend CNM use at the industrial level. The book also addresses important issues regarding these adsorbents that potentially affect future research and industrial applications of carbon-based nanoadsorbents in water security.
Water is the most valuable resource for all human development. With increasing global population the demand for water increases whereas the sources of clean water are decreasing. recycling and reuse of wastewater has become an imperative which demands the development of new, efficient and environmentally friendly treatment methods. Current Trends and Future Developments in (Bio-) Membranes: Recent Achievements in Wastewater and Water Treatments provides a comprehensive coverage of the existing wastewater treatment including, but not exclusively, membrane-based methods. The book presents most common used methods compares and evaluates them depending on their particular application. It illustrates many aspects of the various treatment systems used in water and wastewater purification and lists the advantages of membrane-based methods to non-membrane based technologies. This book focuses on introducing, applications, advantages/disadvantages, evaluating of membrane-based technologies and comparing it with other non-membrane based systems. It also analyses the various limitations of each method. Hence, the book is a key reference text for R&D managers in industry interested in the development of water/waste treatment technologies as well as academic researchers and postgraduate students working in the wider area of the strategic treatment, separation and purification processes.
Advances in Construction and Demolition Waste Recycling: Management, Processing and Environmental Assessment is divided over three parts. Part One focuses on the management of construction and demolition waste, including estimation of quantities and the use of BIM and GIS tools. Part Two reviews the processing of recycled aggregates, along with the performance of concrete mixtures using different types of recycled aggregates. Part Three looks at the environmental assessment of non-hazardous waste. This book will be a standard reference for civil engineers, structural engineers, architects and academic researchers working in the field of construction and demolition waste.
Industry wastewater is a major contributor to environmental pollution with chemicals such as dyes, acids, fungicides, and more creating a threat to the environment. Nanocomposites of heterogeneous photocatalysis can be used to cure such problems due to its efficiency and ease of use, as well as the fact that it turns toxic chemicals completely to carbon dioxide and inorganic acids. With toxic chemicals posing a tremendous threat to ecological wellbeing and human health, it is integral that a variety of nanocomposites are studied for their use in the degradation of toxic and hazardous chemicals. Innovative Nanocomposites for the Remediation and Decontamination of Wastewater describes the synthesis of nanomaterials and its application for the protection of the environment. It presents studies on the photodegradation of the various toxic and hazardous chemicals by different nanocomposites, as well as the decontamination of bodies of water through the use of various nanocomposites. Covering topics such as dye degradation, novel biomaterials, and structural modification, this premier reference source is a vital resource for environmental scientists, construction managers, compliance officers, biochemists, biophysicists, conservation scientists, hydrologists, microbiologists, libraries, students and educators of higher education, researchers, and academicians.
Sustainable Remediation of Contaminated Soil and Groundwater: Materials, Processes, and Assessment provides the remediation tools and techniques necessary for simultaneously saving time and money and maximizing environmental, social and economic benefits. The book integrates green materials, cleaner processes, and sustainability assessment methods for planning, designing and implementing a more effective remediation process for both soil and groundwater projects. With this book in hand, engineers will find a valuable guide to greener remediation materials that render smaller environmental footprint, cleaner processes that minimize secondary environmental impact, and sustainability assessment methods that can be used to guide the development of materials and processes.
Wastewater Treatment Residues as Resources for Biorefinery Products and Energy reviews wastewater treatment processes and the use of residues. The viability of end use processes for residues, such as incineration, cement additives, agricultural fertilizers, and methane production are reviewed and analyzed, as are new processes for the use of residues within a fuels production system, such as pyrolysis, hydrothermal liquefaction and syngas. Specialized chapters discuss fractionation of biomass, the production of compounds from volatile fatty acids that conceptually proceed from the anaerobic acidogenesis of residues, and a final analysis of the overall productivity and viability that can be expected from these production schemes.
Water Quality in the Third Pole: The Roles of Climate Change and Human Activities offers in-depth coverage of water quality issues (natural and human-related), the monitoring of contaminants, and the remediation of water contamination. The book's chapters assess years of research on water quality and climate change in this fascinating and scientifically important region. Topics addressed include climate change impacts on water qualities of freshwater bodies, such as glaciers, lakes, rivers and precipitation. In addition, the book explains the growing concerns over water quality, such as mercury, trace elements, major ions, persistent organic pollutants and their circulation. As such, it is an essential reference for academics and policymakers interested in the water quality of natural bodies.
High-Risk Pollutants in Wastewater presents the basic knowledge regarding the diversity, concentrations, and health and environmental impacts of HRPs in municipal wastewater. The book summarizes information on the types (e.g. heavy metals, toxic organics and pathogens) and toxicities of HRPs in wastewater. In addition, it describes ecological and health hazards arising from the living things' direct/indirect contacts with the HRPs during their full lifecycles (generation, disposal, discharge and reuse) in wastewater or water environments. Sections cover the concepts of appropriate technology for HRP hazard/risk assessment and wastewater treatment/reuse and the issues of strategy and policy for increasing risk control coverage. Finally, the book focuses on the resolution of water quality monitoring, wastewater treatment and disposal problems in both developed and developing countries.
Contaminants of Emerging Concern in Water and Wastewater: Advanced Treatment Processes presents the state-of-the-art in the design and use of adsorbents, membranes, and UV/oxidation processes, along with the challenges that will need to be addressed to close the gap between development and implementation in water/wastewater treatment applications. Chapters cover adsorbent and membrane design and performance, direct comparison of performance data between new (inorganic and metal organic nanoporous materials) and classic adsorbents and membranes, a list of advantages, disadvantages, and challenges related to performance limitations, regenerability, and upscaling. In addition, users will find sections on the identification of potential site and off-site applications that are listed according to adsorbent and membrane types, transformation of CECs in low- and/or medium-pressure UV irradiation processes used for disinfection, the oxidation of CECs by chlorine and ozone, and a comparison of advanced oxidation processes for the treatment of a variety of CECs in water and wastewater.
Like many industrialized regions, the Philadelphia metro area contains pockets of environmental degradation: neighborhoods littered with abandoned waste sites, polluting factories, and smoke-belching incinerators. However, other neighborhoods within and around the city are relatively pristine. This eye-opening book reveals that such environmental inequalities did not occur by chance, but were instead the result of specific policy decisions that served to exacerbate endemic classism and racism. From Workshop to Waste Magnet presents Philadelphia's environmental history as a bracing case study in mismanagement and injustice. Sociologist Diane Sicotte digs deep into the city's past as a titan of American manufacturing to trace how only a few communities came to host nearly all of the area's polluting and waste disposal land uses. By examining the complex interactions among economic decline, federal regulations, local politics, and shifting ethnic demographics, she not only dissects what went wrong in Philadelphia but also identifies lessons for environmental justice activism today. Sicotte's research tallies both the environmental and social costs of industrial pollution, exposing the devastation that occurs when mass quantities of society's wastes mix with toxic levels of systemic racism and economic inequality. From Workshop to Waste Magnet is a compelling read for anyone concerned with the health of America's cities and the people who live in them.
Microbial Wastewater Treatment focuses on the exploitation of microorganisms as decontaminating tools to treat polluted wastewater, a worldwide concern. Microorganism-based processes are seen as promising technologies to treat the ever-increasing problem of polluted wastewater. The book covers recently developed process technologies to solve five major trends in the field of wastewater treatment, including nutrient removal and recovery, trace organic compounds, energy saving and production, sustainability and community involvement.
Evaluating Water Quality to Prevent Future Disasters, volume 11 in the Separation Science and Technology series, covers various separation methods that can be used to avoid water catastrophes arising from climate change, arsenic, lead, algal bloom, fracking, microplastics, flooding, glyphosphates, triazines, GenX, and oil contamination. This book provides a valuable resource that will help the reader solve their potential water contamination problems and help them develop their own new approaches to monitor water contamination. |
![]() ![]() You may like...
|