![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Environmental engineering & technology > Sanitary & municipal engineering
Biodegradation and Detoxification of Micropollutants in Industrial Wastewater summarizes the occurrence and source of micropollutants through various industrial wastewaters. It covers the type of micropollutants, their effects, and emerging detection and treatment methods. The book has 11 chapters, and throughout each chapter, it presents the fate and effects of micropollutants, quantitative and qualitative analysis of micropollutants in industrial wastewaters, and treatment of micropollutants through conventional and advanced wastewater treatment technologies.
Electrochemical membrane technology has drawn extensive attention worldwide during the past decade in water and wastewater treatment. Coupling electrochemical process with membrane technology not only enables a higher removal or decomposition of pollutants in waters, but also ensures a more effective control of membrane fouling as well as a more highly selective separation process. The recent development of electrochemical membrane technology has also extended its applications in desalination, energy harvest, and resource recovery from seawater and wastewaters. Electrochemical Membrane Technology for Water and Wastewater Treatment consolidates state-of-the-art research developments in electrochemical membrane technology in water reclamation and sustainability in terms of fundamental theories, membrane and electrode materials, reactor designs, fouling control mechanisms and applications. Electrochemical Membrane Technology for Water and Wastewater Treatment also introduces fundamental theories and applications of electrochemical membrane technology. The knowledge gaps and future research perspectives in electrochemical membrane technology are also addressed. This book is an excellent resource for the understanding of fundamental theories, latest developments and future prospects in electrochemical membrane technology, which can benefit a broad audience of researchers and engineers working in water purification, membrane technology and electrochemical process.
60 Years of the Loeb-Sourirajan Membrane: Principles, New Materials, Modelling, Characterization and Applications bring forth theoretical advances, novel characterization techniques, materials development, advanced treatment processes, and emerging applications of membrane-based technologies. The trigger for writing this book is the 2020, 60th anniversary of the first asymmetric polymeric membrane invented by Dr. Sidney Loeb and Dr. Srinivasa Sourirajan (University of California, Los Angeles, USA) on the breakthrough discovery of the semipermeable membrane for seawater desalination. The book places emphasis on the advances of organic and inorganic membranes in different fields, covering not only the primary application of membranes for water and wastewater treatment but also other applications dealing with energy conversion and storage, organic solvent purification, gas separation, and biomedical processes.
Integrated Wastewater Management and Valorization using Algal Cultures provides a holistic view on coupled wastewater treatment and biomass production for energy and value-added products using algal cultures. Algal cultures provide low-cost nutrient (nitrogen and phosphorus) treatment and recovery from wastewaters, carbon-dioxide sequestration from waste gases, value-added generation in the form of bio-energy and bio-based chemicals, biosorption of heavy metals and biogas upgrading. The book addresses all these aspects in terms of role of algal cultures in environmental sustainability and circular economy. The production of high value products is addressed through pretreatment and anaerobic co-digestion of wastewater-derived microalgal biomass and microalgal biorefineries. The simultaneous dissolution and uptake of nutrients in microalgal treatment of anaerobic digestate is discussed, as is coupled electrocoagulation and algal cultivation for the treatment of anaerobic digestate and algal biomass production. Finally, optimization of algal biomass production is discussed using metagenomics and machine learning tools, and scale-up potential and the limitations of integrated wastewater-derived microalgal biorefineries is discussed. Integrated Wastewater Management and Valorization using Algal Cultures offers an integrated resource on wastewater treatment, biomass production, bioenergy and value-added product generation for researchers in bioenergy and renewable energy, environmental science and wastewater treatment, as well as environmental and chemical engineering.
Petroleum Industry Wastewater: Advanced and Sustainable Treatment Methods discusses the status of different approaches and advanced processes involved in the treatment of petrochemical and petroleum industry wastewater. The book focuses on advanced, sustainable, and environmentally friendly technologies for removing toxic pollutants from contaminated waters. The book also explores the environmental aspects and impacts of the petroleum industry discharge wastewater, their effect on aquatic life, and possible ways to deal with these effects. Keeping the global water crisis and fast depletion of natural fresh water in mind, more immediate knowledge, information, implication, and effective utilization of available resources are required than we anticipated. The book brings a wide range of methodologies and perspectives under one roof in a comprehensive manner.
Advancements in Polymer-Based Membranes for Water Remediation describes the advanced membrane science and engineering behind the separation processes within the domain of polymer-based membrane systems in water remediation. Emphasis has been put on several aspects, ranging from fundamental concepts to the commercialization of pressure and potential driven membranes, updated with the latest technological progresses, and relevant polymer materials and application potential towards water treatment systems. Also included in this book are advances in polymers for membrane application in reverse osmosis, nanofiltration, ultrafiltration, microfiltration, forward osmosis, and polymeric ion-exchange membranes for electrodialysis and capacitive deionization. With its critical analyzes and opinions from experts around the world, this book will garner considerable interest among actual users, i.e., scientists, engineers, industrialists, entrepreneurs and students.
Development in Wastewater Treatment Research and Processes: Microbial Degradation of Xenobiotics through Bacterial and Fungal Approach covers the active and applicable role that bacteria and fungi play in the degradation of xenobiotic compounds from the environment. The book gives up-to-date information on recent advancements in the field of environmental xenobiotics and how they disturb a plant's metabolism. The book also gives information on aerobic and anaerobic degradation of xenobiotic compounds through bacteria or fungi and/or a combined approach. Finally, the book covers the characteristics of environmental microbiology, biochemical engineering, agricultural microbiology, environmental engineering, and soil bioremediation.
Advances in Oil-Water Separation: A Complete Guide for Physical, Chemical, and Biochemical Processes discusses a broad variety of chemical, physical and biochemical processes, including skimming, membrane separation, adsorption, onsite chemical reactions, burning and usage of suitable microbial strains for onsite degradation of oil. It critically reviews all current developments in oil-water separation processes and technologies, identifies gaps and illuminates the scope for future research and development in the field. This book provides researchers, engineers and environmental professionals working in oil recovery and storage with solutions for disposal of waste oil and separation of oil from water in a sustainable, environmentally-friendly way. As the book provides a complete state-of-art overview on oil-water separation technologies, it will also ease literature searches on oil-water separation technologies.
Shared water resources in Israel and Palestine are often the site of political, economic, historical, legal and ethical contestation. In this, the second of two volumes on the subject, the authors look beyond the political tensions of the region, to argue for the need for shared water security and co-operative resource management. Winning Water Security for Palestinians and Israelis, the authors assess water security in terms of security of access to water resources, security of access to water services and security against risks to and from water. The volume compares and contrasts Israelis remarkable water security with the corresponding water insecurity of the Palestinians. The authors also set out the practical, economic, legal and ethical rationale for a revised cooperation on water security between the two peoples, proposing a workable scheme for putting into practice a new form of cooperation that would hope to benefit both peoples and strengthen their water security.
Microbial Fermentation of Biowastes summarizes new advances in the development of various strategies for enhanced microbial fermentation for organic waste conversion to bioenergy/biochemicals, and for biodegradation of plastic waste. Sections cover principles of additive strategies, multi-stage bioreactors, microbial bioaugmentation strategies, genetically engineered microorganisms, co-digestion strategies, feedstock pre-treatment strategies, enzyme technologies, and hybrid technologies methods. In addition, the book reviews progress in the conversion of common wastes to bioenergy and biochemicals via enhanced anaerobic digestion, also summarizing the significant progress achieved on enhancing anaerobic digestion via additive strategy, multi-stage bioreactor strategy, microbial bioaugmentation strategy, genetic engineering approach, and much more.
Coastal Reservoir Technology and Applications presents the analyses showing that the world is not running out of water, but water is running out of river mouths-we need to work to harness this resource. Compared with inland water storages and desalination technology, coastal reservoirs are a nature-based water solution without disturbing the environment. This book mainly answers the questions of what the coastal reservoir technology is, where we should construct coastal reservoirs, and how to supply sufficient, high-quality and affordable water to the world with minimum environmental/social impacts. Chapter 1 reviews modes of water resources development in the history along with current problems and reasons. Chapter 2 discusses the definition of coastal reservoirs, its classifications and applications, and the SPP/downstream water management strategy. Other chapters analyse water crisis in every continent, as well as their water solutions. The possible coastal reservoir for each major river is suggested as well. Without freshwater, no one can survive. Likewise, without sufficient, high-quality and affordable freshwater, no community can achieve sustainable development. However, water is also a killer when it is too much (floods), too dirty (pollution), and too turbid. Different from other books, this resource shows how to solve these water problems. Coastal reservoirs and SPP strategy are suggested to develop floodwater in a safe way in coastal and inland regions, respectively. Solution of water-food-energy-ecosystem nexus needs a paradigm shift from upstream to downstream water management, i.e., from mountainous dams to coastal reservoirs, which conserves the precious, clean freshwater in seawater environment.
Many physico-chemical and operational factors influence the performance, treatment costs and long-term stability of biofilters for the treatment of wastewater. An Innovative Role of Biofiltration in Wastewater Treatment Plants focuses on identifying the factors that affect biofiltration, such as the hydraulic retention time of the biofiltration system, the type and characteristics of the filter and the attached biomass, explains their influence and provides guidelines on how to control these factors to optimize better operation with respect to pollutant control present in wastewater treatment plants (WWTPs). The fundamental basis of treatment in biofilters is the action of pollutant-degrading microorganisms and consequently the book also discusses in depth about the microbial ecology of biofiltration. In addition, it explores the applications of biofiltration including the removal of emerging pollutants.
Clean Energy and Resource Recovery: Wastewater Treatment Plants as Bio-refineries, Volume 2, summarizes the fundamentals of various treatment modes applied to the recovery of energy and value-added products from wastewater treatment plants. The book addresses the production of biofuel, heat, and electricity, chemicals, feed, and other products from municipal wastewater, industrial wastewater, and sludge. It intends to provide the readers an account of up-to-date information on the recovery of biofuels and other value-added products using conventional and advanced technological developments. The book starts with identifying the key problems of the sectors and then provides solutions to them with step-by-step guidance on the implementation of processes and procedures. Titles compiled in this book further explore related issues like the safe disposal of leftovers, from a local to global scale. Finally, the book sheds light on how wastewater treatment facilities reduce stress on energy systems, decrease air and water pollution, build resiliency, and drive local economic activity. As a compliment to Volume 1: Biomass Waste Based Biorefineries, Clean Energy and Resource Recovery, Volume 2: Wastewater Treatment Plants as Bio-refineries is a comprehensive reference on all aspects of energy and resource recovery from wastewater. The book is going to be a handy reference tool for energy researchers, environmental scientists, and civil, chemical, and municipal engineers interested in waste-to-energy.
Waste-to-Energy Approaches Towards Zero Waste: Interdisciplinary Methods of Controlling Waste provides a comprehensive overview of the key technologies and approaches to achieve zero waste from energy. The book emphasizes the importance of an integrated approach to waste-to-energy using fundamental concepts and principles, and presents key methods, their applications, and perspectives on future development. The book provides readers with the tools to make key decisions on waste-to-energy projects from zero-waste principles, while incorporating sustainability and life cycle assessments from financial and environmental perspectives. Waste-to-Energy Approaches Towards Zero Waste: Interdisciplinary Methods of Controlling Waste offers practical guidance on achieving energy with zero waste ideal for researchers and graduate students involved in waste-to-energy and renewable energy, waste remediation, and sustainability.
Cost-Effective Technologies for Solid Waste and Wastewater Treatment synthesizes methods, case studies, and analyses of various state-of-the-art techniques for removing contaminants from wastewater, solid waste, or sewage and converting or reusing the waste with minimum impact on the environment. Focusing on innovative treatment strategies, as well as recent modifications to conventional processes, the book covers methods for a complex variety of emerging pollutants, including organic matter, chemicals, and micropollutants resulting from developmental and industrial activities. Serving as a practical guide to state-of-the-art methods, Cost-Effective Technologies for Solid Waste and Wastewater Treatment also delivers offers foundational information on the practical design of treatment and reuse systems and explains the treatments in terms of scale, efficiency, and effectiveness. It focuses on cost-effective technologies that are particularly applicable to environmental clean-up, such as bioaugmentation and biostimulation of plastics, activated carbon, phytoremediation, crude oil pollution stress, adsorbents, contaminants of emerging concern, anaerobic digestion, ISCO, biosorption, bioremediation, radioactive contaminants, constructed wetlands, nanoremediation, and rainwater. As such, it is a valuable and practical resource for researchers, students, and managers in the fields of environmental science and engineering, as well as wastewater management, chemical engineering, and biotechnology.
Solar-Driven Water Treatment: Re-engineering and Accelerating Nature's Water Cycle looks at the use of solar energy and in particular photovoltaic technologies, as a viable, accessible and sustainable option in the treatment of water. Solar-Driven Water Treatment: Re-engineering and Accelerating Nature's Water Cycle provides insight into the different solar powered technologies, in-depth information about the viability of sunlight in the water treatment process, the potential environmental implications as well as the performance, economics, operation and maintenance of the discussed technologies. Elaborating on the potential issues and health risks associated with the water purification systems this reference also covers the need for appropriate technologies in the present scenario to improve worldwide access to clean drinking water. Readers will learn the most appropriate technology for their specific need making this book useful for renewable energy and environmental engineers in investigating energy efficiency, water treatment technologies, and the economics of technological change in the treatment of water by solar technologies.
Removal of Emerging Contaminants from Wastewater through Bio-nanotechnology showcases profiles of the nonregulated contaminants termed as "emerging contaminants," which comprise industrial and household persistent toxic chemicals, pharmaceuticals and personal care products (PPCPs), pesticides, surfactants and surfactant residues, plasticizers and industrial additives, manufactured nanomaterials and nanoparticles, microplastics, etc. that are used extensively in everyday life. The occurrence of "emerging contaminants" in wastewater, and their behavior during wastewater treatment and production of drinking water are key issues in the reuse and recycling of water resources. This book focuses on the exploitation of Nano-biotechnology inclusive of the state-of-the-art remediate strategies to degrade/detoxify/stabilize toxic and hazardous contaminants and restore contaminated sites, which is not as comprehensively discussed in the existing titles on similar topics available in the global market. In addition, it discusses the potential environmental and health hazards and ecotoxicity associated with the widespread distribution of emerging contaminants in the water bodies. It also considers the life cycle assessment (LCA) of emerging (micro)-pollutants with suitable case studies from various industrial sources.
An Integration of Phycoremediation Processes in Wastewater Treatment reviews the potential of microalgae to treat wastewater containing highly recalcitrant compounds whose degradation is not achieved by the conventional existing treatments. In addition, the book describes how the microalgae collected after wastewater treatment can be used for obtaining added-value products, hence closing the loop and contributing to a circular economy. Finally, the technoeconomical aspects of this green technology are addressed, along with the design and development of photobioreactors, genetic aspects, metagenomics and metabolomics.
Marine Hydrocarbon Spill Assessments: From Risk of Spill through to Probabilities Estimates describes the methods used for estimating hydrocarbon spill risks and the potential consequences. Throughout the book, mathematical methodologies and algorithms are included to aid the reader in the solving of applied tasks presented. Marine Hydrocarbon Spill Assessments: From Risk of Spill through to Probabilities Estimates provides a fundamental understanding of the oil properties and processes which determine the persistence and impacts of oils in the marine environment. It informs the reader of the current research in hydrocarbon spill assessments, starting from an assessment of a risk of a spill, and moving on to modelling approaches to impact assessments, laboratory toxicity assessments, field impact assessments and response options, and prevention and contingency planning.
Tackling the issue of water and wastewater treatment nowadays requires novel approaches to ensure that sustainable development can be achieved. Water and wastewater treatment should not be seen only as an end-of-pipe solution but instead the approach should be more holistic and lead to a more sustainable process. This requires the integration of various methods/processes to obtain the most optimized design. Integrated and Hybrid Process Technology for Water and Wastewater Treatment discusses the state-of-the-art development in integrated and hybrid treatment processes and their applications to the treatment of a vast variety of water and wastewater sources. The approaches taken in this book are categorized as (i) resources recovery and consumption, (ii) optimal performance, (iii) physical and environmental footprints, (iv) zero liquid discharge concept and are (v) regulation-driven. Through these categories, readers will see how such an approach could benefit the water and wastewater industry. Each chapter discusses challenges and prospects of an integrated treatment process in achieving sustainable development. This book serves as a platform to provide ideas and to bridge the gap between laboratory-scale research and practical industry application.
Source Reduction and Waste Minimization is the second volume in the series Advanced Zero Waste Tools: Present and Emerging Waste Management Practices. It addresses processes and practices for waste minimization to support efforts to promote a more sustainable society and provide readers with a proper understanding of the major mechanisms followed for waste minimization across fields. Despite being one of the major challenges mankind is facing to establish a sustainable society, waste minimization techniques are not broadly adopted and an organized collection of these techniques with corresponding evidence of results is not available currently. This book covers numerous mechanisms supported by scientific evidence and case studies, as well as in-depth flowcharts and process diagrams to allow for readers to adopt these processes. Summarizing the present and emerging zero waste tools on the scale of both experimental and theoretical models, Advanced Zero Waste Tools is the first step toward understanding the state-of-the-art practices in making the zero-waste goal a reality. In addition to environmental and engineering principles, it also covers economic, toxicologic, and regulatory issues, making it an important resource for researchers, engineers, and policymakers working toward environmental sustainability. |
![]() ![]() You may like...
Cattle Of The Ages - Stories And…
Cyril Ramaphosa
Hardcover
![]()
The Gaelic Topography of Scotland, and…
James Alexander Robertson
Paperback
R750
Discovery Miles 7 500
Practical Home and School Methods of…
Bernhart P (Bernhart Paul) B Holst
Hardcover
R1,147
Discovery Miles 11 470
|