![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time > Solar system
Thirty-five million years ago, a meteorite three miles wide and moving sixty times faster than a bullet slammed into the sea bed near what is now Chesapeake Bay. The impact, more powerful than the combined explosion of every nuclear bomb on Earth, blasted out a crater fifty miles wide and one mile deep. Shock waves radiated through the Earth for thousands of miles, shaking the foundations of the Appalachians, as gigantic waves and winds of white-hot debris transformed the eastern seaboard into a lifeless wasteland. Chesapeake Invader is the story of this cataclysm, told by the man who discovered it happened. Wylie Poag, a senior scientist with the U.S. Geological Survey, explains when and why the catastrophe occurred, what destruction it caused, how scientists unearthed evidence of the impact, and how the meteorite's effects are felt even today. Poag begins by reviewing how scientists in the decades after World War II uncovered a series of seemingly inexplicable geological features along the Virginia coast. As he worked to interpret one of these puzzling findings in the 1980s in his own field of paleontology, Poag began to suspect that the underlying explanation was the impact of a giant meteorite. He guides us along the path that he and dozens of colleagues subsequently followed as--in true scientific tradition--they combined seemingly outrageous hypotheses, painstaking research, and equal parts good and bad luck as they worked toward the discovery of what turned out to be the largest impact crater in the U.S. We join Poag in the lab, on deep-sea drilling ships, on the road for clues in Virginia, and in heated debates about his findings. He introduces us in clear, accessible language to the science behind meteorite impacts, to life and death on Earth thirty-five million years ago, and to the ways in which the meteorite shaped the Chesapeake Bay area by, for example, determining the Bay's very location and creating the notoriously briny groundwater underneath Virginia. This is a compelling work of geological detective work and a paean to the joys and satisfactions of a life in science. Originally published in 1999. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Eclipses have captured attention and sparked curiosity about the cosmos since the first appearance of humankind. Having been blamed for everything from natural disasters to the fall of kings, they are now invaluable tools for understanding many celestial as well as terrestrial phenomena. This clear, easy-to-understand guide explains what causes total eclipses and how they can be used in experiments to examine everything from the dust between the planets to general relativity. A new chapter has been added on the eclipse of July 11, 1991 (the great Hawaiian eclipse). Originally published in 1995. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
In the second millennium b.c., Babylonian scribes assembled a vast collection of astrological omens, believed to be signs from the gods concerning the kingdom's political, military, and agricultural fortunes. The importance of these omens was such that from the eighth or seventh until the first century, the scribes observed the heavens nightly and recorded the dates and locations of ominous phenomena of the moon and planets in relation to stars and constellations. The observations were arranged in monthly reports along with notable events and prices of agricultural commodities, the object being to find correlations between phenomena in the heavens and conditions on earth. These collections of omens and observations form the first empirical science of antiquity and were the basis of the first mathematical science, astronomy. For it was discovered that planetary phenomena, although irregular and sometimes concealed by bad weather, recur in limited periods within cycles in which they are repeated on nearly the same dates and in nearly the same locations. N. M. Swerdlow's book is a study of the collection and observation of ominous celestial phenomena and of how intervals of time, locations by zodiacal sign, and cycles in which the phenomena recur were used to reduce them to purely arithmetical computation, thereby surmounting the greatest obstacle to observation, bad weather. The work marks a striking advance in our understanding of both the origin of scientific astronomy and the astrological divination through which the kingdoms of ancient Mesopotamia were governed. Originally published in 1998. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
In 2004, Venus crossed the sun's face for the first time since 1882. Some did not bother to step outside. Others planned for years, reserving tickets to see the transit in its entirety. But even this group of astronomers and experience seekers were attracted not by scientific purpose but by the event's beauty, rarity, and perhaps--after this book--history. For previous sky-watchers, though, transits afforded the only chance to determine the all-important astronomical unit: the mean distance between earth and sun. Eli Maor tells the intriguing tale of the five Venus transits previously observed and the fantastic efforts made to record them. This is a story of heroes and cowards, of reputations earned and squandered, all told against a backdrop of phenomenal geopolitical and scientific change. With a novelist's talent for the details that keep readers reading late, Maor tells the stories of how Kepler's misguided theology led him to the laws of planetary motion; of obscure Jeremiah Horrocks, who predicted the 1639 transit only to die, at age 22, a day before he was to discuss the event with the only other human known to have seen it; of the unfortunate Le Gentil, whose decade of labor was rewarded with obscuring clouds, shipwreck, and the plundering of his estate by relatives who prematurely declared him dead; of David Rittenhouse, Father of American Astronomy, who was overcome by the 1769 transit's onset and failed to record its beginning; and of Maximilian Hell, whose good name long suffered from the perusal of his transit notes by a color-blind critic. Moving beyond individual fates, Maor chronicles how governments' participation in the first international scientific effort--the observation of the 1761 transit from seventy stations, yielding a surprisingly accurate calculation of the astronomical unit using Edmund Halley's posthumous directions--intersected with the Seven Years' War, British South Seas expansion, and growing American scientific prominence. Throughout, Maor guides readers to the upcoming Venus transits in 2004 and 2012, opportunities to witness a phenomenon seen by no living person and not to be repeated until 2117
Even before the present Administrator of NASA, Daniel Goldin, made the phrase 'better, faster, cheaper' the slogan of at least the Office of Space Science, that same office under the Associate Administrator of Lennard Fisk and its Division of Solar System Exploration under the direction of Wes Huntress had begun a series of planetary spacecraft whose developmental cost, phase CID in the parlance of the trade, was to be held to under $150M. In order to get the program underway rapidly they chose two missions without the open solicitation now the hallmark of the program. One of these two missions, JPL' s Mars Pathfinder, was to be a technology demonstration mission with little immediate science return that would enable later high priority science missions to Mars. Many of the science investigations that were included had significant foreign contributions to keep NASA's cost of the mission within the Discovery budget. The second of these missions and the first to be launched was the Near Earth Asteroid Rendezvous mission, or NEAR, awarded to Johns Hopkins University's Applied Physics Laboratory. This mission was quite different than Mars Pathfinder, being taken from the list of high priority objectives of the science community and emphasizing the science return and not the technology development of the mission. This mission was also to prove to be well under the $150M phase CID cap.
Planetary scientist and educator Ken Coles has teamed up with Ken Tanaka from the United States Geological Survey's Astrogeology team, and Phil Christensen, Principal Investigator of the Mars Odyssey orbiter's THEMIS science team, to produce this all-purpose reference atlas, The Atlas of Mars. Each of the thirty standard charts includes: a full-page color topographic map at 1:10,000,000 scale, a THEMIS daytime infrared map at the same scale with features labeled, a simplified geologic map of the corresponding area, and a section describing prominent features of interest. The Atlas is rounded out with extensive material on Mars' global characteristics, regional geography and geology, a glossary of terms, and an indexed gazetteer of up-to-date Martian feature names and nomenclature. This is an essential guide for a broad readership of academics, students, amateur astronomers, and space enthusiasts, replacing the NASA atlas from the 1970s.
Totality: The Great American Eclipses is a complete guide to the most stunning of celestial sights, total eclipses of the Sun. It focuses on the eclipses of August 21, 2017 and April 8, 2024 that pass across the United States. The U.S. mainland has not experienced a total solar eclipse since 1979. This book provides information, photographs, and illustrations to help the public understand and safely enjoy all aspects of these eclipses including: How to observe a total eclipse of the Sun How to photograph and video record an eclipse Why solar eclipses happen The earliest attempts to understand and predict eclipses The mythology and folklore of eclipses The response of animals to total solar eclipses The response of man to total eclipses through time How scientists used total eclipses to understand how the Sun works How astronomers used a total solar eclipse in 1919 to confirm Einstein's general theory of relativity Weather prospects for the 2017 eclipse Detailed maps of the path of totality for the 2017 eclipse and the eclipses of 2018 through 2024 Precise local times for the eclipses of 2017 and 2024 (the next total solar eclipse to visit the U.S.) Color and black-and-white photographs, diagrams, and charts to illustrate and explain total solar eclipses Global maps of total solar eclipses from 2017 to 2045 and lists of total and annual solar eclipses from 1970 through 2070
What are meteorites? Where do they come from? Are they a threat? What are they made of? How common are they? As centuries have passed, our knowledge of these extraterrestrial objects has advanced immensely, and today, the scientific study of meteorites provides a wealth of information about the solar system. Meteorites reveal clues to some of the greatest scientific enigmas:
Written by a team of experts, Meteorites is an accessible, comprehensive guide that features over two hundred full-color photographs, diagrams and graphs. Look no further for a wonderful introduction to these powerful, yet mystifying, objects. Brigitte Zanda is Associate Professor at the Mineralogy Laboratory of the Muséum National d'Histoire Naturelle in Paris, and Adjunct Member of the Graduate Faculty at Rutgers University. Following on from her PhD in Geochemistry, she has written many papers in Meteoritics and Planetary Science and other journals, and is a member of the Nomenclature Committee of the Meteoritical Society. Monica Rotaru is Department Chief of Earth Sciences at the Palais de la découverte in Paris, where she organizes scientific exhibitions. After her PhD in geochemistry, she has conducted research in climatology and written television science documentaries.
Fully updated throughout, including revised illustrations and new images from NASA missions, this new edition provides an overview of Earth's history from a planetary science perspective for Earth science undergraduates. Earth's evolution is described in the context of what we know about other planets and the cosmos at large, from the origin of the cosmos to the processes that shape planetary environments and from the origins of life to the inner workings of cells. Astronomy, Earth science, planetary science and astrobiology are integrated to give students the whole picture of how the Earth has come to its present state and an understanding of the relationship between key ideas in different fields. The book presents concepts in nontechnical language and mathematical treatments are avoided where possible. New end-of-chapter summaries and questions allow students to check their understanding and critical thinking is emphasized to encourage students to explore ideas scientifically for themselves.
The Sun is the closest star to Earth, and the only one we can observe in any sort of detail. As such it is a fascinating field of study, and one that is well-suited to amateur astronomers - the Sun is close enough to need little magnification. It also has the practical advantage, unlike every other astronomical object, of being visible in the daytime!During solar eclipses, there are momentary chances to observe and photograph some spectacular and scientifcally interesting sights.Studying the Sun nonetheless needs specialist knowledge. Safety is paramount, as without the right precautions the heat and light of the Sun would instantly blind the observer. But given the right techniques, the Sun is a rewarding subject for amateur astronomers: in this book, Professor Chris Kitchin provides all the information needed for safe solar observing.
This volume contains papers presented at the US/European Celestial Mecha nics Workshop organized by the Astronomical Observatory of Adam Mickiewicz University in Poznan, Poland and held in Poznan, from 3 to 7 July 2000. The purpose of the workshop was to identify future research in celestial mech anics and encourage collaboration among scientists from eastem and westem coun tries. There was a full program of invited and contributed presentations on selected subjects and each day ended with a discussion period on a general subject in celestial mechanics. The discussion topics and the leaders were: Resonances and Chaos-A. Morbidelli; Artificial Satellite Orbits-K. T. Alfriend; Near Earth Ob jects - K. Muinonen; Small Solar System Bodies - I. Williams; and Summary - P. K. Seidelmann. The goal of the discussions was to identify what we did not know and how we might further our knowledge. The size of the meeting and the language differences somewhat limited the real discussion, but, due to the excellence of the different discussion leaders, each of these sessions was very interesting and productive. Celestial Mechanics and Astrometry are both small fields within the general subject of Astronomy. There is also an overlap and relationship between these fields and Astrodynamics. The amount of interaction depends on the interest and efforts of individual scientists."
The two most fascinating questions about extraterrestrial life are where it is found and what it is like. In particular, from our Earth-based vantage point, we are keen to know where the closest life to us is, and how similar it might be to life on our home planet. This book deals with both of these key issues. It considers possible homes for life, with a focus on Earth-like exoplanets. And it examines the possibility that life elsewhere might be similar to life here, due to the existence of parallel environments, which may result in Darwinian selection producing parallel trees of life between one planet and another. Understanding Life in the Universe provides an engaging and myth-busting overview for any reader interested in the existence and nature of extraterrestrial life, and the realistic possibility of discovering credible evidence for it in the near future.
In September of 1859, the entire Earth was engulfed in a gigantic cloud of seething gas, and a blood-red aurora erupted across the planet from the poles to the tropics. Around the world, telegraph systems crashed, machines burst into flames, and electric shocks rendered operators unconscious. Compasses and other sensitive instruments reeled as if struck by a massive magnetic fist. For the first time, people began to suspect that the Earth was not isolated from the rest of the universe. However, nobody knew what could have released such strange forces upon the Earth--nobody, that is, except the amateur English astronomer Richard Carrington. In this riveting account, Stuart Clark tells for the first time the full story behind Carrington's observations of a mysterious explosion on the surface of the Sun and how his brilliant insight--that the Sun's magnetism directly influences the Earth--helped to usher in the modern era of astronomy. Clark vividly brings to life the scientists who roundly rejected the significance of Carrington's discovery of solar flares, as well as those who took up his struggle to prove the notion that the Earth could be touched by influences from space. Clark also reveals new details about the sordid scandal that destroyed Carrington's reputation and led him from the highest echelons of science to the very lowest reaches of love, villainy, and revenge. "The Sun Kings" transports us back to Victorian England, into the very heart of the great nineteenth-century scientific controversy about the Sun's hidden influence over our planet.
Illustrated with breathtaking images of the Solar System and of the Universe around it, this book explores how the discoveries within the Solar System and of exoplanets far beyond it come together to help us understand the habitability of Earth, and how these findings guide the search for exoplanets that could support life. The author highlights how, within two decades of the discovery of the first planets outside the Solar System in the 1990s, scientists concluded that planets are so common that most stars are orbited by them. The lives of exoplanets and their stars, as of our Solar System and its Sun, are inextricably interwoven. Stars are the seeds around which planets form, and they provide light and warmth for as long as they shine. At the end of their lives, stars expel massive amounts of newly forged elements into deep space, and that ejected material is incorporated into subsequent generations of planets. How do we learn about these distant worlds? What does the exploration of other planets tell us about Earth? Can we find out what the distant future may have in store for us? What do we know about exoworlds and starbirth, and where do migrating hot Jupiters, polluted white dwarfs, and free-roaming nomad planets fit in? And what does all that have to do with the habitability of Earth, the possibility of finding extraterrestrial life, and the operation of the globe-spanning network of the sciences?
The solar system has always been a messy place in which gravity wreaks havoc. Moons form, asteroids and comets crash into planets, ice ages commence, and dinosaurs disappear. By describing the dramatic consequences of such disturbances, this authoritative and entertaining book reveals the fundamental interconnectedness of the solar system--and what it means for life on Earth. After relating a brief history of the solar system, Alan Rubin describes how astronomers determined our location in the Milky Way. He provides succinct and up-to-date accounts of the energetic interactions among planetary bodies, the generation of the Earth's magnetic field, the effects of other solar-system objects on our climate, the moon's genesis, the heating of asteroids, and the origin of the mysterious tektites. Along the way, Rubin introduces us to the individual scientists--including the famous, the now obscure, and the newest generation of researchers--who have enhanced our understanding of the galactic neighborhood. He shows how scientific discoveries are made; he discusses the uncertainty that presides over the boundaries of knowledge as well as the occasional reluctance of scientists to change their minds even when confronted by compelling evidence. This fresh historical perspective reveals science as it is: an imperfect but self-correcting enterprise. Journeying to the frontiers of knowledge, Rubin concludes with the exciting realm of astrobiology. He chronicles the history of the search for life on Mars and describes cutting-edge lines of astrobiological inquiry, including panspermia (the possible transfer of life from planet to planet), the likelihood of technologically advanced alien civilizations in our galaxy, and our probable responses to alien contact. Authoritative and up-to-date but also entertaining and fluidly written, "Disturbing the Solar System" will appeal to any reader who has ever picked up a rock or gazed at the moon with a sense of wonder.
It was a lucky twist of fate when in the early1980s David Levy, a writer and amateur astronomer, joined up with the famous scientist Eugene Shoemaker and his wife, Carolyn, to search for comets from an observation post on Palomar Mountain in Southern California. Their collaboration would lead to the 1993 discovery of the most remarkable comet ever recorded, Shoemaker-Levy 9, with its several nuclei, five tails, and two sheets of debris spread out in its orbit plane. A year later, Levy would be by the Shoemakers' side again when their comet ended its four-billion-year-long journey through the solar system and collided with Jupiter in the most stunning astronomical display of the century. Not only did this collision revolutionize our understanding of the history of the solar system, but it also offered a spectacular confirmation of one scientist's life work. As a close friend and colleague of Shoemaker (who died in 1997 at the age of 69), Levy offers a uniquely insightful account of his life and the way it has shaped our thinking about the universe. Early in his training as a geologist, Shoemaker suspected that it wasn't volcanic activity but rather collisions with comets and asteroids that created most of the craters on the moon and most other bodies in the solar system. Convincing the scientific community of the plausibility of "impact theory," and revealing its power for penetrating mysteries such as the extinction of the dinosaurs and the timing of the Earth's eventual demise, became Shoemaker's mission. Through conversations with Shoemaker and his family, Levy reconstructs the journey that began with a young geologist's serious desire to go to the moon in the late1940s. Sent by the government to find a way to harvest plutonium, Shoemaker instead found evidence in desert craters for what became his impact theory. While he never became an astronaut, he did become the first geologist hired by NASA and subsequently set the research agenda for the first manned lunar landing. After a series of victories and setbacks for Shoemaker, the collision of Shoemaker-Levy 9 with Jupiter provided the most convincing proof to date of the role of impacts in our solar system. Levy's explanation of the scientific reasoning that guided Shoemaker in his career up to this dramatic point--as well as his personal portrait of a man who found white-water rafting to be an easy way to relax--sets these fascinating events in a human scale. This biography shows what Shoemaker's legacy will be for our understanding of the story of the Earth well into the twenty-first century.
Cometography is a multi-volume catalog of every comet observed throughout history. It uses the most reliable orbits known to determine the distances from the Earth and Sun at the time a comet was discovered and last observed, as well as the largest and smallest angular distance to the Sun, most northerly and southerly declination, closest distance to the Earth, and other details to enable the reader to understand the physical appearance of each well-observed comet. Volume 5 provides a complete discussion of the observations and pertinent calculations for every comet seen between 1960 and 1982. The comets are listed in chronological order, with complete references to publications relating to each comet and physical descriptions of each comet's development throughout its apparition. Cometography will be valuable to historians of science as well as providing amateur and professional astronomers with a definitive reference on comets through the ages.
The cycle of day and night and the cycle of seasons are two familiar natural cycles around which many human activities are organized. But is there a third natural cycle of importance for us humans? On 13 March 1989, six million people in Canada went without electricity for many hours: a large explosion on the sun was discovered as the cause of this blackout. Such explosions occur above sunspots, dark features on the surface of the Sun that have been observed through telescopes since the time of Galileo. The number of sunspots has been found to wax and wane over a period of 11 years. Although this cycle was discovered less than two centuries ago, it is becoming increasingly important for us as human society becomes more dependent on technology. For nearly a century after its discovery, the cause of the sunspot cycle remained completely shrouded in mystery. The 1908 discovery of strong magnetic fields in sunspots made it clear that the 11-year cycle is the magnetic cycle of the sun. It is only during the last few decades that major developments in plasma physics have at last given us the clue to the origins of the cycle and how the large explosions affecting the earth arise. Nature's Third Cycle discusses the fascinating science behind the sunspot cycle, and gives an insider's perspective of this cutting-edge scientific research from one of the leaders of the field.
Meteorites are fascinating cosmic visitors. Using accessible language, this book documents the history of mineralogy and meteorite research, summarizes the mineralogical characteristics of the myriad varieties of meteorites, and explains the mineralogical characteristics of Solar System bodies visited by spacecraft. Some of these bodies contain minerals that do not occur naturally on Earth or in meteorites. The book explains how to recognize different phases under the microscope and in back-scattered electron images. It summarizes the major ways in which meteoritic minerals form - from condensation in the expanding atmospheres of dying stars to crystallization in deep-seated magmas, from flash-melting in the solar nebula to weathering in the terrestrial environment. Containing spectacular back-scattered electron images, colour photographs of meteorite minerals, and with an accompanying online list of meteorite minerals, this book provides a useful resource for meteorite researchers, terrestrial mineralogists, cosmochemists and planetary scientists, as well as graduate students in these fields
This volume contains Euler's early astronomical tables and his First theory of the moon of 1753.
Your interest is bound to be held by the contents of this work and the amazing characters, their achievements and the other topics dealt with herein. A search team was formed to find any remains of the Ark of Noah. They recorded on tape, the amazing account by an elderly Armenian living in the USA who had climbed onto the petrified hulk of the Holy Ark, when his uncle took him up Mount Ararat as a boy. His recorded account was subjected to the P.S.E Test (Lie Test)and it passed. Read the amazing account of the incredible Count St Germain, philosopher, alchemist and linguist, who could manufacture diamonds and transmute gold and was friend of Louis XV. Voltaire said to him He is a man who knows everything and never dies. He discovered the elixir of youth. Various nobles and dignitaries met him over the decades and he always looked the same. Read about N.D.E's (near death experiences) ghosts, spirits and the paranormal, the Atlantis myth, the story of Noah and more. The title given to this work will now be obvious to all.
Covering the first five decades of the exploration of Mars, this atlas is the most detailed visual reference available. It brings together, for the first time, a wealth of information from diverse sources, featuring annotated maps, photographs, tables and detailed descriptions of every Mars mission in chronological order, from the dawn of the space age to Mars Express. Special attention is given to landing site selection, including reference to some missions that were planned but never flew. Phobos and Deimos, the tiny moons of Mars, are covered in a separate section. Contemporary maps reveal our improving knowledge of the planet's surface through the latter half of the twentieth century. Written in non-technical language, this atlas is a unique resource for anyone interested in planetary sciences, the history of space exploration and cartography, while the detailed bibliography and chart data are especially useful for academic researchers and students.
As we speak, stunning new snapshots of our Solar System are being transmitted to Earth by a fleet of space probes, landers, and rovers. Yet nowadays, it is all too easy to take such images for granted amidst the deluge of competing visuals we scroll through every day. To truly understand the value of these incredible space photos, we first need to understand the tools that made them possible. This is the story of imaging instruments in space, detailing all the technological missteps and marvels that have allowed us to view planetary bodies like never before. From the rudimentary cameras launched in the 1950's to the cutting-edge imaging instruments onboard the Mars Perseverance rover, this book covers more than 100 imaging systems sent aboard various spacecraft to explore near and distant planetary bodies. Featured within are some of the most striking images ever received by these pioneering instruments, including Voyager's Pale Blue Dot, Apollo's Blue Marble, Venera's images from the surface of Venus, Huygens' images of Titan, New Horizon's images of Pluto and Arrokoth, and much more. Along the way, you will learn about advancements in data transmission, digitization, citizen science, and other fields that revolutionized space imaging, helping us peer farther and more clearly across the Solar System.
|
You may like...
A Brief History Of Black Holes - And Why…
Dr. Becky Smethurst
Paperback
Problems of Geocosmos-2018 - Proceedings…
Tatiana B. Yanovskaya, Andrei Kosterov, …
Hardcover
R4,058
Discovery Miles 40 580
|