![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > States of matter
This short but revealing biography tells the story of Kurt Mendelssohn FRS, one of the founding figures in the field of cryogenics, from his beginnings in Berlin through his move to Oxford in the 1930s, and his groundbreaking work in low temperature and solid state physics. He set up the first helium liquefier in the United Kingdom, and did fundamental research that increased our understanding of superconductivity and superfluid helium. Dr. Mendelssohn's vision extended beyond his scientific and technical achievements; he saw the potential for growth of cryogenics in industry, visiting China, Japan and India to forge global collaborations, founded the leading scientific journal in the field and established a conference series which still runs to this day. He published two monographs which remain as classics in the field. This book explores the story behind the science, in particular his relationships with other key figures in the cryogenics field, most notably Nicholas Kurti at Oxford, and his work outside cryogenics, including his novel ideas on the engineering of the pyramids.
With global capacity in excess of 5 million tons annually, phenolic resins are one of the leading thermosetting resins that are used in many diverse industries such as wood adhesives, fiberglass/mineral wool binder, molded materials for autos/electronic/electrical industries, brakes, abrasives, foam, coatings/adhesives, laminates, composites, metal castings/refractories, and rubber industry. These phenolic resin business areas are critical to the national economy and general welfare of emerging and developed nations. Although phenolic resins are barely noticed in these applications, it is difficult to imagine their absence since they are vital and not easily replaced by other polymeric materials due to favorable cost/performance characteristics of phenolic resins. In this new book these application areas are summarized and updated by global phenolic experts that are engaged daily in these activities. Further new technology and application areas of global technical activity are presented and include nanotechnology, updated phenolic resin chemistry, carbon fiber and long glass fiber reinforced molding materials, new analyses/testing, carbon foam, carbon/carbon brakes for autos, photo resists, new fiber reinforced systems, renewable raw materials, and recycling. It is anticipated that the new book will feature a global perspective of phenolic resins through the participation of international (North America, Europe and Asia) phenolic experts that was lacking in all previous books related to phenolic resins.
Filling a gap in the literature, this crucial publication on the
renowned Lifshitz-Slezov-Wagner Theory of first-order phase
transitions is authored by one of the scientists who gave it its
name. Prof Slezov spent decades analyzing this topic and obtained a
number of results that form the cornerstone of this rapidly
developing branch of science.
Many materials or media in nature and technology possess a microstructure which determines their macroscopic behaviour. The knowledge of the relevant mechanisms is often more comprehensive on the micro than on the macro scale. On the other hand, not all information on the micro level is relevant for the understanding of this macro behaviour. Therefore, averaging and homogenization methods are needed to select only the specific information from the micro scale, which influences the macro scale. These methods also open the possibility to design or to influence microstructures with the objective to optimize their macro behaviour. This book presents the development of new methods in this interdisciplinary field of macro- micro-interactions of different engineering branches like mechanical and process engineering, applied mathematics, theoretical, and computational physics. In particular, solids with microstructures and particle systems are considered.
of progress has been made in the development of In the last twenty years a great amount new magnetic materials. Permanent magnets have progressed from the AlNiCo's (with (BH)m-8 MGOe) to the strong rare-earth magnets of SmCo BH)m-20 MGOe), Sm2(Co, Fe, Cu, Zrh7 s BH)m-30 MGOe) and the recently discovered Nd-Fe-B super-magnets with (BH)m-50 MGOe. For years the magnetic storage industry has employed Fe0 and CrO for storage media and 2 3 z permalloys and ferrites for recording heads. The recent development of thin film heads, the demand of higher density of information storage and the emergence of completely new technologies, like magneto-optics, call for entirely new types of magnetic materials. Another area in which new techniques of materials preparation have made a dramatic impact is the epitaxial growth of magnetic films. Recent work has shown that this process can be controlled on the scale of atomic monolayers permitting the growth of totally artificial structures, such as artificial superlattices with a resolution on this scale. Epitaxial growth has also permitted the stabilization of metastable phases in thin film form. These new phases often possess striking properties, such as strong perpendicular anisotropies, which may prove useful for technological applications such as recording. Research on magnetic multilayers and superlattices is increasing at an accelerating pace. Complex couplings between different magnetic layers lead to new properties not seen in bulk materials.
This thesis describes the fabrication of metal-insulator-semiconductor (MIS) structures using very high permittivity dielectrics (based on rare earths) grown by high-pressure sputtering from metallic targets. It demonstrates the possibility of depositing high permittivity materials (GdScO3) by means of high pressure sputtering from metallic targets using in situ plasma oxidation on Si and indium phosphate (InP) substrates. The advantage of this system is the high working pressure, which causes the particles to undergo multiple collisions and become thermalized before reaching the substrate in a pure diffusion process, thus protecting the semiconductor surface from damage. This work presents a unique fabrication using metallic targets and involving a two-step deposition process: a thin metallic film is sputtered in an Ar atmosphere and this film is then plasma oxidized in situ. It also demonstrates the fabrication of GdScO3 on Si with a permittivity value above 30 from metallic Gd and Sc targets. Since co-sputtering was not possible, a nanolaminate of these materials was deposited and annealed. The electrical properties of these devices show that the material is highly interesting from a microelectronic integration standpoint.
The Handbook Series on Semiconductor Parameters will consist of 5 volumes and will include data on the most popular semiconductor materials. These volumes aim to be a basic reference for scientists, engineers, students and technicians working in semiconductor materials and devices. The books have been kept compact but comprehensive and contain the values of frequently needed parameters selected and commented by leading experts on these materials. The first volume will include data on Si, Ge, diamond, GaAs, GaP, GaSb, InAs, InP, and InSb.
Advances in nanotechnology have allowed physicists and engineers to miniaturize electronic structures to the limit where finite-size related phenomena start to impact their properties. This book discusses such phenomena and models made for their description. The book starts from the semiclassical description of nonequilibrium effects, details the scattering theory used for quantum transport calculations, and explains the main interference effects. It also describes how to treat fluctuations and correlations, how interactions affect transport through small islands, and how superconductivity modifies these effects. The last two chapters describe new emerging fields related with graphene and nanoelectromechanics. The focus of the book is on the phenomena rather than formalism, but the book still explains in detail the main models constructed for these phenomena. It also introduces a number of electronic devices, including the single-electron transistor, the superconducting tunnel junction refrigerator, and the superconducting quantum bit.
Except for digressions in Chapters 8 and 17, this book is a highly unified treatment of simple oscillations and waves. The phenomena treated are "simple" in that they are de scribable by linear equations, almost all occur in one dimension, and the dependent variables are scalars instead of vectors or something else (such as electromagnetic waves) with geometric complications. The book omits such complicated cases in order to deal thoroughly with properties shared by all linear os cillations and waves. The first seven chapters are a sequential treatment of electrical and mechanical oscillating systems, starting with the simplest and proceeding to systems of coupled oscillators subjected to ar bitrary driving forces. Then, after a brief discussion of nonlinear oscillations in Chapter 8, the concept of normal modes of motion is introduced and used to show the relationship between os cillations and waves. After Chapter 12, properties of waves are explored by whatever mathematical techniques are applicable. The book ends with a short discussion of three-dimensional vii viii Preface problems (in Chapter 16), and a study of a few aspects of non linear waves (in Chapter 17)."
191 Apart from numerous difficulties arising from the high pressure technique as such, there is a natural limitation to the possibility of applying a hydrostatic pressure, since liquids under pressure will solidify above a certain pressure limit. 8 2 Up to pressures of 3 X 10 kg.jm. at room temperature, a liquid like isopentane can be used. For higher pressures helium gas may be used, perhaps to about 9 2 10 kg.jm. , but BRIDGMAN already encountered enormous leakage difficulties 7 when using this gas at 7.10 kg.jm.2 at 90 Degrees K. A solution has been found by applying mechanical pressure for the range 8 9 2 between 3 X 10 and 10 kg.jm. , by using silver chloride as transmittant. In this case, however, one has to apply unknown corrections for shearing stress and deformation of the sample, a problem which BRIDGMAN solved experimentally by a determination of the resistivity in the pressure region between 2 and 8 2 5 X 10 kg.jm. , by the hydrostatic and by the mechanical pressure method as well, and applying the correction factor thus determined to the results obtained at higher pressures. Though this method seems to be right in good approximation, the data for the highest pressures are to be considered as less accurate.
Soft matter and biological systems pose many challenges for theoretical, experimental and computational research. From the computational point of view, these many-body sytems cover variations in relevant time and length scales over many orders of magnitude. Indeed, the macroscopic properties of materials and complex fluids are ultimately to be deduced from the dynamics of the microsopic, molecular level. In these lectures, internationally renowned experts offer a tutorial presentation of novel approaches for bridging these space and time scales in realistic simulations. This volume addresses graduate students and nonspecialist researchers from related areas seeking a high-level but accessible introduction to the state of the art in soft matter simulations.
Phase transitions in which crystalline solids undergo structural changes present an interesting problem in the interplay between the crystal structure and the ordering process. This text, intended for readers with some prior knowledge of condensed-matter physics, emphasizes the basic physics behind such spontaneous structural changes in crystals. Starting with the relevant thermodynamic principles, the book discusses the nature of order variables and their collective motion in a crystal lattice; in a structural phase transition a singularity in such a collective mode is responsible for the lattice instability, as revealed by soft phonons. This mechanism is analogous to the interplay of a charge-density wave and a periodically deformed lattice in low-dimensional conductors. The text also describes experimental methods for modulated crystal structures and gives examples of structural changes in representative systems. The book is divided into two parts. The first, theoretical, part includes such topics as: the Landau theory of phase transitions; statistics, correlations and the mean-field approximation; pseudospins and their collective modes; soft lattice modes and pseudospin condensates; lattice imperfections and their role in the phase transitions of real crystals. The second part discusses experimental studies of modulated crystals using x-ray diffraction, neutron inelastic scattering, light scattering, dielectric measurements, and magnetic resonance spectroscopy.
Market: Students and researchers in chaos, plasma physics, and fluid transport. This superb collection of invited papers offers an excellent overview of the current status and future trends in chaotic dynamics, plasma and fluid physics, nonlinear phenomena and chaos, and transport and turbulence studies.
When Kai Zuber's pioneering text on neutrinos was published in 2003, the author correctly predicted that the field would see tremendous growth in the immediate future. In that book, Professor Zuber provided a comprehensive self-contained examination of neutrinos, covering their research history and theory, as well as their application to particle physics, astrophysics, nuclear physics, and the broad reach of cosmology; but now to be truly comprehensive and accurate, the field's seminal reference needs to be revised and expanded to include the latest research, conclusions, and implications. Revised as needed to be equal to the research of today, Neutrino Physics, Third Edition delves into neutrino cross-sections, mass measurements, double beta decay, solar neutrinos, neutrinos from supernovae, and high-energy neutrinos, as well as entirely new experimental results in the context of theoretical models. Written to be accessible to graduate students and readers from diverse backgrounds, this edition, like the first, provides both an introduction to the field as well as the information needed by those looking to make their own contributions to it. And like the second edition, it whets the researcher's appetite, going beyond certainty to pose those questions that still need answers. Features Presents the only single-author comprehensive text on neutrino physics Includes experimental and theoretical particle physics and examines solar neutrinos and astroparticle implications Offers details on new developments and recent experiments
The Handbook Series on Semico nductor Parameters will consist of 5 volumes and will include data on the most popular semiconductor materials. These volumes aim to be a basic reference for scientists, engineers, students and technicians working in semiconductor materials and devices. The books have been kept compact but comprehensive and contain the values of frequently needed parameters selected and commented by leading experts on these materials. The first volume will include data on Si, Ge, diamond, GaAs, GaP, GaSb, InAs, InP, and InSb.
The Nature of the Electronic Excited States of Molecular Systems; B. Di Bartolo. Properties of the Excited States of Complex Molecules; J. Reuss. Rate of Processes Involving Excited States; A.M. Stoneham. Excited States in Semiconductors; C. Klingshirn. Advances in the Characterization of Excited States of Luminescent Ions; G.F. Imbusch. Relaxed Excited States of Color Centers; G. Baldacchini. Properties of Highly Populated Excited States in Solids; F. Auzel. Advances in the Sensitization of Phosphors; B. Smets. Laser Spectroscopy inside Inhomogeneously Broadened Lines; M. MacFarlane. Excited-State Dynamics and Energy Transfer in Doped-Substituted Garnets; A. Brenier, et al. Studies of the Charge Transfer States of Certain Rare-Earth Activators in Yitrium and Lanthanum Oxysulfides; C.W. Struck, W.H. Fonger. The Jahn-Teller Effect in the Optical Spectra of Impurities; G. Viliani. 42 additional articles. Index.
This book takes a holistic approach to plasma physics and controlled fusion via Inertial Confinement Fusion (ICF) techniques, establishing a new standard for clean nuclear power generation. Inertial Confinement Fusion techniques to enable laser-driven fusion have long been confined to the black-box of government classification due to related research on thermonuclear weapons applications. This book is therefore the first of its kind to explain the physics, mathematics and methods behind the implosion of the Nd-Glass tiny balloon (pellet), using reliable and thoroughly referenced data sources. The associated computer code and numerical analysis are included in the book. No prior knowledge of Laser Driven Fusion and no more than basic background in plasma physics is required.
Classical Methods of Statistics is a guidebook combining theory and practical methods. It is especially conceived for graduate students and scientists who are interested in the applications of statistical methods to plasma physics. Thus it provides also concise information on experimental aspects of fusion-oriented plasma physics. In view of the first three basic chapters it can be fruitfully used by students majoring in probability theory and statistics. The first part deals with the mathematical foundation and framework of the subject. Some attention is given to the historical background. Exercises are added to help readers understand the underlying concepts. In the second part, two major case studies are presented which exemplify the areas of discriminant analysis and multivariate profile analysis, respectively. To introduce these case studies, an outline is provided of the context of magnetic plasma fusion research. In the third part an overview is given of statistical software; separate attention is devoted to SAS and S-PLUS. The final chapter presents several datasets and gives a description of their physical setting. Most of these datasets were assembled at the ASDEX Upgrade Tokamak. All of them are accompanied by exercises in form of guided (minor) case studies. The book concludes with translations of key concepts into several languages.
The book is devoted to the application of phase-field (diffuse interface) models in materials science. Phase-field modeling emerged only recently as a theoretical approach to tackle questions concerning the evolution of materials microstructure, the relation between microstructure and materials properties and the transformation and evolution of different phases. This volume brings together the essential thermodynamic ideas as well as the essential mathematical tools to derive phase-field model equations. Starting from an elementary level such that any graduate student familiar with the basic concepts of partial differential equations can follow, it shows how advances in the field of phase-field modeling will come from a combination of thermodynamic, mathematical and computational tools. Also included are two extensive examples of the application of phase-field models in materials science.
This thesis reports advances in terahertz time-domain spectroscopy, relating to the development of new techniques and components that enhance the experimentalist's control over the terahertz polarisation state produced by photoconductive emitters. It describes how utilising the dynamic magnetoelectric response at THz frequencies, in the form of electromagnons, can probe material properties at a transition between two magnetically ordered phases. Additionally, preliminary investigations into the properties of materials exposed to extreme terahertz optical electric fields are reported. The work presented in this thesis may have immediate impacts on the study of anisotropic media at THz frequencies, with photoconductive emitters and detectors being the most commonly used components for commercially available terahertz spectroscopy and imaging systems, and by providing a new way to study the nature of magnetic phase transitions in multiferroics. In the longer term the increased understanding of multiferroics yielded by ultrafast spectroscopic methods, including terahertz time-domain spectroscopy, may help develop new magnetoelectric and multiferroic materials for applications such as spintronics.
This monograph develops a unified microscopic basis for phases and phase changes of bulk matter and small systems, based on classical physics. It describes the thermodynamics of ensembles of particles and explains phase transition in gaseous and liquid systems. The origins are derived from simple but physically relevant models of how transitions occur between rigid and fluid states, of how phase equilibria arise, and how they differ for small and large systems.
The 9th International Workshop on "Laser Interaction and Related Plasma Phenomena" was held November 6-10, 1989, at the Naval Postgraduate School, Monterey, Cal ifornia. Starting in 1969, thi s represents a continuation of the longest series of meetings in this field in the United States. It is, in fact, the longest series anywhere with published Proceedings that document the advances and the growth of this dynamic field of physics and technology. Following the discovery of the laser in 1960, the study of processes involved in laser beam interactions with materials opened a basically new dimension of physics. The energy densities and intensities generated are many orders of magnitude beyond those previously observed in laboratories. Simultaneously, the temporal dynamics of this interaction covers a broad range, only recently reaching ultra short times, of the order of a few femtoseconds. Applications of this technology are of interest for many types of material treatments. Further, from the very beginning, a key ambitious goal has been to produce fusion energy by intense laser irradiation of a target containi ng appropriate fusion fuels. The vari ous phenomena discovered during the ensuing research on laser-fusion are, indeed, much more complex than originally expected. However, in view of recent advances in physics understanding, a route to successful laser fusion can be seen. The development of fusion energy received a very strong stimulation since the last workshop due to the now partially publicized results of underground nuclear explosions.
This classroom-tested textbook is a modern primer on the rapidly developing field of quantum nano optics which investigates the optical properties of nanosized materials. The essentials of both classical and quantum optics are presented before embarking through a stimulating selection of further topics, such as various plasmonic phenomena, thermal effects, open quantum systems, and photon noise. Didactic and thorough in style, and requiring only basic knowledge of classical electrodynamics, the text provides all further physics background and additional mathematical and computational tools in a self-contained way. Numerous end-of-chapter exercises allow students to apply and test their understanding of the chapter topics and to refine their problem-solving techniques.
This proceedings volume, "Plastic Deformation of Ceramics," constitutes the papers of an international symposium held at Snowbird, Utah from August 7-12, 1994. It was attended by nearly 100 scientists and engineers from more than a dozen countries representing academia, national laboratories, and industry. Two previous conferences on this topic were held at The Pennsylvania State University in 1974 and 1983. Therefore, the last major international conference focusing on the deformation of ceramic materials was held more than a decade ago. Since the early 1980s, ceramic materials have progressed through an evolutionary period of development and advancement. They are now under consideration for applications in engineering structures. The contents of the previous conferences indicate that considerable effort was directed towards a basic understanding of deformation processes in covalently bonded or simple oxide ceramics. However, now, more than a decade later, the focus has completely shifted. In particular, the drive for more efficient heat engines has resulted in the development of silicon-based ceramics and composite ceramics. The discovery of high-temperature cupric oxide-based superconductors has created a plethora of interesting perovskite-Iike structured ceramics. Additionally, nanophase ceramics, ceramic thin films, and various forms of toughened ceramics have potential applications and, hence, their deformation has been investigated. Finally, new and exciting areas of research have attracted interest since 1983, including fatigue, nanoindentation techniques, and superplasticity. |
![]() ![]() You may like...
Molecular Breeding of Forage and Turf…
Toshihiko Yamada, German Spangenberg
Hardcover
R4,627
Discovery Miles 46 270
Plant Growth-Promoting Microbes for…
Heba I. Mohamed, Hossam El-Din Saad El-Beltagi, …
Hardcover
R5,424
Discovery Miles 54 240
Improving the Profitability…
Andre Bationo, Djimasbe Ngaradoum, …
Hardcover
R4,622
Discovery Miles 46 220
Sustainable Crop Production - Recent…
Vijay Singh Meena, Mahipal Choudhary, …
Hardcover
R3,532
Discovery Miles 35 320
Cacao Diseases - A History of Old…
Bryan A. Bailey, Lyndel W. Meinhardt
Hardcover
|