![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > States of matter
* Covers the state-of-the-art progress in one-dimensional nanomaterials polymeric materials * Presents synthesis, characterization, and applications of one-dimensional polymeric nanocomposites for energy production, storage, flexible electronics, sensors, and biomedical applications * Provides fundamentals of electrochemical behavior and their understanding of energy devices such as fuel cells, batteries, supercapacitors, solar cells, etc. * Provides new directions to scientists, researchers, and students to better understand the chemistry, technologies, and applications of one-dimensional polymeric nanocomposites
This book presents experimental studies on emergent transport and magneto-optical properties in three-dimensional topological insulators with two-dimensional Dirac fermions on their surfaces. Designing magnetic heterostructures utilizing a cutting-edge growth technique (molecular beam epitaxy) stabilizes and manifests new quantization phenomena, as confirmed by low-temperature electrical transport and time-domain terahertz magneto-optical measurements. Starting with a review of the theoretical background and recent experimental advances in topological insulators in terms of a novel magneto-electric coupling, the author subsequently explores their magnetic quantum properties and reveals topological phase transitions between quantum anomalous Hall insulator and trivial insulator phases; a new topological phase (the axion insulator); and a half-integer quantum Hall state associated with the quantum parity anomaly. Furthermore, the author shows how these quantum phases can be significantly stabilized via magnetic modulation doping and proximity coupling with a normal ferromagnetic insulator. These findings provide a basis for future technologies such as ultra-low energy consumption electronic devices and fault-tolerant topological quantum computers.
2 The linearized ideal MHO equations. . . . . . . . . . . . 204 3 Spectral problems corresponding to evolutionary problems . . 211 4 Stability of equilibrium configurations and the Energy Principle 215 5 Alternative forms of the plasma potential energy 220 6 Minimization of the potential energy with respect to a parallel displacement . . . . . . . . . . . . . 222 7 Classification of ideal MHO instabilities . 224 8 The linearized non-ideal MHO equations . 226 Chapter 6. Homogeneous and discretely structured plasma oscillations 229 I Introduction . . . . . . . . . . . . . . . 229 2 Alfven waves in an incompressible ideal plasma 230 3 Cold ideal plasma oscillations. . . . 233 4 Compressible hot plasma oscillations 236 5 Finite resistivity effects . . . . . . . 239 6 Propagation of waves generated by a local source 240 7 Stratified plasma oscillations . . . . . . . . . 247 8 Oscillations of a plasma slab . . . . . . . . . 254 9 Instabilities of an ideal stratified gravitating plasma 256 10 Instabilities of a resistive stratified gravitating plasma. 262 Chapter 7. MHO oscillations of a gravitating plasma slab 265 I Introduction . . . . . . . . . . . . . . . 265 2 Gravitating slab equilibrium . . . . . . . . 266 3 Oscillations of a hot compressible plasma slab 267 4 Investigation of the slab stability via the Energy Principle 270 5 On the discrete spectrum of the operator Kk . . . . . . 274 6 On the essential spectrum of the operator Kk . . . . . . 279 7 On the discrete spectrum embedded in the essential spectrum 282 8 The eigenfunction expansion formula . . . . . . . . . . 285 9 Excitation of plasma oscillations by an external power source . 288 10 The linearized equations governing resistive gravitating plasma slab oscillations . . . . . . . . . . . . . . . . . . . . . 290 II Heuristic investigation of resistive instabilities. . . . . . . . . .
Semisolid metallurgy (SSM) is now some 37-years-old in terms of time from its conception and ?rst reduction to practice in the laboratory. In the intervening years, there has been a steadily growing body of research on the subject and the beginning of signi?cant industrial applications. The overall ?eld of SSM comprises today a large number of speci?c process routes, almost all of which fall in the category of either "Rheocasting" or Thi- casting." The former begins with liquid metal and involves agitation during partial solidi?cation followed by forming. The latter begins with solid metal of suitable structure and involves heating to the desired fraction solid and forming. Research over the past 37 years, and particularly over the last decade, has provided a detailed picture of process fundamentals and led to a wide range of speci?c SSM processes and process innovations. Industrial studies and actual p- duction experience are providing a growing picture of the process advantages and limitations. At this time, the conditions for eventual wide adoption of SSM appear favorable, both for nonferrous and ferrous alloys. It must, however, be recognized that major innovations, such as SSM become adopted only slowly by industries where capital costsarehigh,pro?tmarginsaremodest,andfailuretomeetcustomercommitments carries a high penalty.
This book deals with the study of superconductivity in systems with coexisting wide and narrow bands. It has been previously suggested that superconductivity can be enhanced in systems with coexisting wide and narrow bands when the Fermi level is near the narrow band edge. In this book, the authors study two problems concerning this mechanism in order to: (a) provide a systematic understanding of the role of strong electron correlation effects, and (b) propose a realistic candidate material which meets the ideal criteria for high-Tc superconductivity. Regarding the role of strong correlation effects, the FLEX+DMFT method is adopted. Based on systematic calculations, the pairing mechanism is found to be indeed valid even when the strong correlation effect is considered within the formalism. In the second half of the book, the authors propose a feasible candidate material by introducing the concept of the "hidden ladder" electronic structure, arising from the combination of the bilayer lattice structure and the anisotropic orbitals of the electrons. As such, the book contributes a valuable theoretical guiding principle for seeking unknown high-Tc superconductors.
Physics, rather than mathematics, is the focus in this classic graduate lecture note volume on statistical mechanics and the physics of condensed matter. This book provides a concise introduction to basic concepts and a clear presentation of difficult topics, while challenging the student to reflect upon as yet unanswered questions.
This book explains theoretical and technological aspects of amorphous drug formulations. It is intended for all those wishing to increase their knowledge in the field of amorphous pharmaceuticals. Conversion of crystalline material into the amorphous state, as described in this book, is a way to overcome limited water solubility of drug formulations, in this way enhancing the chemical activity and bioavailability inside the body. Written by experts from various fields and backgrounds, the book introduces to fundamental physical aspects (explaining differences between the ordered and the disordered solid states, the enhancement of solubility resulting from drugs amorphization, physical instability and how it can be overcome) as well as preparation and formulation procedures to produce and stabilize amorphous pharmaceuticals. Readers will thus gain a well-funded understanding and find a multi-faceted discussion of the properties and advantages of amorphous drugs and of the challenges in producing and stabilizing them. The book is an ideal source of information for researchers and students as well as professionals engaged in research and development of amorphous pharmaceutical products.
This collection of classic papers in shock compression science makes available not only some of the most important classic papers on shock waves by Poisson, Rankine, Earnshaw, Riemann, and Hugoniot, which remain important references, but also some pathbreaking papers from the 1940s and 1950s on shocks in solids and fluids by such theorists as Bethe, and Weyl. Although their ideas and results remain of current interest, many of these papers have been hard to find, since the journals in which they were published are not available in many libraries. The editors have also translated papers written in French to make them accessible to a wider audience. This collection is thus not only a valuable historical resource but also a vital reference for those working in the field.
This second volume of "Progress in Photon Science - Recent Advances" presents the latest achievements made by world-leading researchers in Russia and Japan. Thanks to recent advances in light source technologies; detection techniques for photons, electrons, and charged particles; and imaging technologies, the frontiers of photon science are now being expanding rapidly. Readers will be introduced to the latest research efforts in this rapidly growing research field through topics covering bioimaging and biological photochemistry, atomic and molecular phenomena in laser fields, laser-plasma interaction, advanced spectroscopy, electron scattering in laser fields, photochemistry on novel materials, solid-state spectroscopy, photoexcitation dynamics of nanostructures and clusters, and light propagation.
The use of concepts borrowed from topology has led to major athances in t,heorctical physics in recent years. hl quailt,uni field theory. the pionvering work \>?. Skyrme and follow ups on classical solut,ions of Yalig AIills Higgs t,heories has lead to the discovery of t,he lion peturbati~e sectors of gauge theory. Topology has also found its way into colidensed matter physics. Clas sification of defects in ordered media bg 11oinotop~ theorg is a well known example (see e.g. Kleman and Toulouse. Les Kouches XXXV, 1980). More recent,ly. topology and condensed matter physics have again met in t,hc realm of the fract,ioiial cluantml Hall effect. Experimental progress in molecular beam epitaxy techniques leading to high mohilit? samples al lowed the disco\;ery of this reniarkablc and now1 phenomelloii. Th~se cle veloprnents lead also to the at,t,rib~~tion of the 1998 Nobel Prize in physics to Laughlin, Storrner and Tsui. The rlotions of fractional charge as well as fractional statistics ran be interpreted by a topological interaction of infinite rauge. So it is natural to find in the Les Houclles series a school devoted to quantum Hall physics. intcrinediate st,atistics and Chem Sirnons theory. This session also included some one dimensional physics topics like t,he Ca,logero Sutkerland model and some Lut,t,inger liquid physics. Polymer physics is also related to topology. 111 this field topological const,rairlts may be described by concept,^ from knot theory and statist'ical physics. Hence this session also included Brownian motion theory related to knot theory.
This book focuses on theoretical thermotics, the theory of transformation thermotics and its extended theories for the active control of macroscopic thermal phenomena of artificial systems, which is in sharp contrast to classical thermodynamics comprising the four thermodynamic laws for the passive description of macroscopic thermal phenomena of natural systems. The book covers the basic concepts and mathematical methods, which are necessary to understand thermal problems extensively investigated in physics, but also in other disciplines of engineering and materials. The analyses rely on models solved by analytical techniques accompanied with computer simulations and laboratory experiments. This book serves both as a reference work for senior researchers and a study text for zero beginners.
This handbook presents the key properties of silicon carbide (SiC), the power semiconductor for the 21st century. It describes related technologies, reports the rapid developments and achievements in recent years, and discusses the remaining challenging issues in the field. The book consists of 15 chapters, beginning with a chapter by Professor W. J. Choyke, the leading authority in the field, and is divided into four sections. The topics include presolar SiC history, vapor-liquid-solid growth, spectroscopic investigations of 3C-SiC/Si, developments and challenges in the 21st century; CVD principles and techniques, homoepitaxy of 4H-SiC, cubic SiC grown on 4H-SiC, SiC thermal oxidation processes and MOS interface, raman scattering, NIR luminescent studies, Mueller matrix ellipsometry, raman microscopy and imaging, 4H-SiC UV photodiodes, radiation detectors, and short wavelength and synchrotron X-ray diffraction. This comprehensive work provides a strong contribution to the engineering, materials, and basic science knowledge of the 21st century, and will be of interest to material growers, designers, engineers, scientists, postgraduate students, and entrepreneurs.
This monograph is dedicated to the derivation and analysis of fluid models occurring in plasma physics. It focuses on models involving quasi-neutrality approximation, problems related to laser propagation in a plasma, and coupling plasma waves and electromagnetic waves. Applied mathematicians will find a stimulating introduction to the world of plasma physics and a few open problems that are mathematically rich. Physicists who may be overwhelmed by the abundance of models and uncertain of their underlying assumptions will find basic mathematical properties of the related systems of partial differential equations. A planned second volume will be devoted to kinetic models. First and foremost, this book mathematically derives certain common fluid models from more general models. Although some of these derivations may be well known to physicists, it is important to highlight the assumptions underlying the derivations and to realize that some seemingly simple approximations turn out to be more complicated than they look. Such approximations are justified using asymptotic analysis wherever possible. Furthermore, efficient simulations of multi-dimensional models require precise statements of the related systems of partial differential equations along with appropriate boundary conditions. Some mathematical properties of these systems are presented which offer hints to those using numerical methods, although numerics is not the primary focus of the book.
Key features: Presents a theoretical outline for each chapter. Motivates the students with standard mechanics problems with step-by-step explanations. Challenges the students with more complex problems with detailed solutions.
What is a supermaterial? A concise definition is by no means obvious, but a clue can be obtained from the topics discussed here.. In addition to superconductors, the reader will encounter magnetic effects of many kinds, including giant and even colossal ones, organic conductors, photoconductors, and even 400-year-old Japanese ceramics. Processing is a prominent pursuit in supermaterials research, especially but not exclusively of the superconductors. The papers on characterisation and theory break new ground, particularly in pursuit of new optoelectronic phenomena. The parade of new materials recently synthesised, often containing four or more elements, is surprising. But it is in it reporting of new applications that the book stands out: from circuits to sensors, supermaterials are making their impact on society.
The discovery of C60 and C70, icosahedral spherical and ellipsoidal carbon species in September 1985, followed by their successful synthesis in 1990, excited the imagination of many scientists and demanded a radical revision of old, seemingly well-founded, preconceptions in carbon science, leading to the institution of a new, multidisciplinary science of chemistry, physics and materials science "in the round". Unique carbon materials have been discovered, like the nanotubes, buckyonions and endohedral metallofullerenes; and the fullerenes themselves, and their derivatives, have been found to possess a plethora of interesting properties, ranging from the inhibition of HIV-I protease to superconductivity and ferromagnetism. This book discusses the physics and chemistry of the fullerenes in this context.
This book investigates phase transitions and critical phenomena in disordered systems driven out of equilibrium. First, the author derives a dimensional reduction property that relates the long-distance physics of driven disordered systems to that of lower dimensional pure systems. By combining this property with a modern renormalization group technique, the critical behavior of random field spin models driven at a uniform velocity is subsequently investigated. The highlight of this book is that the driven random field XY model is shown to exhibit the Kosterlitz-Thouless transition in three dimensions. This is the first example of topological phase transitions in which the competition between quenched disorder and nonequilibrium driving plays a crucial role. The book also includes a pedagogical review of a renormalizaion group technique for disordered systems.
Features Covers both basic introductory topics, in addition to more advanced content Accompanied by over 200 problems starting from group algebra to the derivation of Migdal-Makeenko equations, Kim - Shifman - Vainshtein - Zakharov axion, and gluon + gluon to Higgs cross section, etc. Solutions are incorporated into the chapters to test understanding
Features Fully updated throughout, with exciting new coverage on graphene, nanostructures and nanocomposites, thermoelectric nanomaterials, and topological nanomaterials. Authored by an authority on phonons. Interdisciplinary, with broad applications through condensed matter physics, nanoscience, and solid state physics.
Ultra-cold atomic ensembles have emerged in recent years as a powerful tool in many-body physics research, quantum information science and metrology. This thesis presents an experimental and theoretical study of the coherent properties of trapped atomic ensembles at high densities, which are essential to many of the aforementioned applications. The study focuses on how inter-particle interactions modify the ensemble coherence dynamics, and whether it is possible to extend the coherence time by means of external control. The thesis presents a theoretical model which explains the effect of elastic collision of the coherence dynamics and then reports on experiments which test this model successfully in the lab. Furthermore, the work includes the first implementation of dynamical decoupling with ultra-cold atomic ensembles. It is demonstrated experimentally that by using dynamical decoupling the coherence time can be extended 20-fold. This has a great potential to increase the usefulness of these ensembles for quantum computation.
Features Discusses fluid theory illustrated by the investigation of Langmuir sheaths Explores charged particle motion illustrated by the investigation of charged particle trapping in the earth's magnetosphere Examines the MHD and WKB theories
The book includes a thorough description of a wide range of physical properties of organic superconductors of reduced dimensionality. The authors start with an overview of the field followed by a background discussion and selected experimental topics. A critical discussion of theoretical proposals is presented under the constraints of experimental observations and exciting possibilities for the symmetry of the order parameter are presented, including the cases of inhomogeneous superconducting states and triplet superconductivity. The possible origins of Cooper pairing are explored and tests to detect experimentally the pairing symmetry are described in detail. The book ends with a discussion of important open questions, where the search for their answers will keep the field alive for the next decade.
Solid-State NMR Characterization of Heterogeneous Catalysts and Catalytic Reactions provides a comprehensive account of state-of-the-art solid-state NMR techniques and the application of these techniques in heterogeneous catalysts and related catalytic reactions. It includes an introduction to the basic theory of solid-state NMR and various frequently used techniques. Special emphasis is placed on characterizing the framework and pore structure, active site, guest-host interaction, and synthesis mechanisms of heterogeneous catalysts using multinuclear one- and two-dimensional solid-sate NMR spectroscopy. Additionally, various in-situ solid-state NMR techniques and their applications in investigation of the mechanism of industrially important catalytic reactions are also discussed. Both the fundamentals and the latest research results are covered, making the book suitable as a reference guide for both experienced researchers in and newcomers to this field. Feng Deng is a Professor at Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences.
This thesis extends our understanding of systems of independent electrons by developing a generalization of Bloch's Theorem which is applicable whenever translational symmetry is broken solely due to arbitrary boundary conditions. The thesis begins with a historical overview of topological condensed matter physics, placing the work in context, before introducing the generalized form of Bloch's Theorem. A cornerstone of electronic band structure and transport theory in crystalline matter, Bloch's Theorem is generalized via a reformulation of the diagonalization problem in terms of corner-modified block-Toeplitz matrices and, physically, by allowing the crystal momentum to take complex values. This formulation provides exact expressions for all the energy eigenvalues and eigenstates of the single-particle Hamiltonian. By precisely capturing the interplay between bulk and boundary properties, this affords an exact analysis of several prototypical models relevant to symmetry-protected topological phases of matter, including a characterization of zero-energy localized boundary excitations in both topological insulators and superconductors. Notably, in combination with suitable matrix factorization techniques, the generalized Bloch Hamiltonian is also shown to provide a natural starting point for a unified derivation of bulk-boundary correspondence for all symmetry classes in one dimension. |
![]() ![]() You may like...
Ionic Liquids - From Knowledge to…
Natalia Plechkova, Robin Rogers, …
Hardcover
R3,566
Discovery Miles 35 660
Magnetic Materials and Magnetic…
Dipti Ranjan Sahu, Vasilios N. Stavrou
Hardcover
R3,515
Discovery Miles 35 150
Emerging Developments and Applications…
Aamir Shahzad, Maogang He
Hardcover
R7,039
Discovery Miles 70 390
Scanning Probe Microscopy of Soft Matter…
V.V. Tsukruk
Hardcover
Electrical Properties of Materials
Laszlo Solymar, Donald Walsh, …
Hardcover
R4,812
Discovery Miles 48 120
Foams - Structure and Dynamics
Isabelle Cantat, Sylvie Cohen-Addad, …
Hardcover
R2,541
Discovery Miles 25 410
|