![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > States of matter
The quantum Hall effects remains one of the most important subjects to have emerged in condensed matter physics over the past 20 years. The fractional quantum Hall effect, in particular, has opened up a new paradigm in the study of strongly correlated electrons, and it has been shown that new concepts, such as fractional statistics, anyon, chiral Luttinger liquid and composite particles, are realized in two-dimensional electron systems. This book explains the quantum Hall effects together with these new concepts starting from elementary quantum mechanics. Thus, graduate students can use this book to gain an overall understanding of these phenomena.
This book describes the coupling between elementary processes, plasma kinetics and electrodynamics in different types of electrical discharges and under non-equilibrium conditions. Analytical methods based on rigorous kinetic theory are developed to interpret the results obtained by numerical methods. Particular emphasis is placed on the kinetics of non-equilibrium N2, O2 and N2-02 plasmas as well as on conditions relevant to atmospheric physics, reentry problems and acoustic and shock waves in non-equilibrium atmospheric gases.
This open access book serves as textbook on the physics of the radiation belts surrounding the Earth. Discovered in 1958 the famous Van Allen Radiation belts were among the first scientific discoveries of the Space Age. Throughout the following decades the belts have been under intensive investigation motivated by the risks of radiation hazards they expose to electronics and humans on spacecraft in the Earth's inner magnetosphere. This textbook teaches the field from basic theory of particles and plasmas to observations which culminated in the highly successful Van Allen Probes Mission of NASA in 2012-2019. Using numerous data examples the authors explain the relevant concepts and theoretical background of the extremely complex radiation belt region, with the emphasis on giving a comprehensive and coherent understanding of physical processes affecting the dynamics of the belts. The target audience are doctoral students and young researchers who wish to learn about the physical processes underlying the acceleration, transport and loss of the radiation belt particles in the perspective of the state-of-the-art observations.
This thesis describes lyotropic chromonic liquid crystals (LCLCs) with exotic elastic and viscous properties. The first part of the thesis presents a thorough analysis of the elastic and viscous properties of LCLCs as functions of concentration, temperature and ionic contents, while the second part explores an active nematic system: living liquid crystals, which represent a combination of LCLC and living bacteria. LCLCs are an emerging class of liquid crystals that have shown profound connections to biological systems in two aspects. First, the assembly process of the chromonic aggregates is essentially the same as DNA oligomers and other super-molecular assemblies of biological origin. LCLCs thus provide an excellent model system for studying physical properties such as the elasticity and viscosity of these supramolecular assemblies. Second, LCLCs are biocompatible, thus serving as a unique anisotropic matrix to interface with living systems such as bacteria. This thesis deepens our understanding of both aspects. The noncovalent nature of chromonic aggregation produces the unique viscoelasticity to be found in LCLCs, which differs dramatically from that of traditional LCs. Anisotropic interactions between LCLCs and bacteria lead to fascinating phenomena such as the deformation of LCLCs with a characteristic wavelength determined by the elasticity of the LCLCs and the activity of the bacteria, orientationally controlled trajectories of bacteria and visualization of 24 nm flagella motion.
The subject of this book is to study the porous media and the transport processes occur there. As a first step, the authors discuss several techniques for artificial representation of porous. Afterwards, they describe the single and multi phase flows in simplistic and complex porous structures in terms of macroscopic and microscopic equations as well as of their analytical and numerical solutions. Furthermore, macroscopic quantities such as permeability are introduced and reviewed. The book also discusses with mass transport processes in the porous media which are further strengthen by experimental validation and specific technological applications. This book makes use of state-of-the-art techniques for the modeling of transport processes in porous structures, and considers of realistic sorption mechanisms. It the applies advanced mathematical techniques for upscaling of the major quantities, and presents the experimental investigation and application, namely, experimental methods for the measurement of relevant transport properties. The main benefit of the book is that it discusses all the topics related to transport in porous media (including state-of-the-art applications) and presents some of the most important theoretical, numerical and experimental developments in porous media domain, providing a self-contained major reference that is appealing to both the scientists and the engineers. At the same time, these topics encounter a variety of scientific and engineering disciplines, such as chemical, civil, agricultural, mechanical engineering. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of related professionals and scientists.
This book is a compilation of selected papers from the 8th International Multidisciplinary Conference on Optofluidics (IMCO 2018) held in Shanghai on August 5-8, 2018, as well as papers from the IMCO 2019 held in Hong Kong on June 14-17, 2019. The work focuses on the current development in the fields of optofluidics, microfluidics, silicon photonics, optical metamaterials and other related areas. Readers from both academia and industry will benefit from the experts' opinion and the lasted development in the multidisciplinary field of optofluidics.
Complex oxide materials, especially the ABO3-type perovskite materials, have been attracting growing scientific interest due to their unique electro-optical properties, leading to photorefractive effects that form the basis for such devices as holographic storage, optical data processing and phase conjugation. The optical and mechanical properties of non-metals are strongly affected by the defects and impurities that are unavoidable in any real material. Nanoscopically sized surface effects play an important role, especially in multi-layered ABO3 structures, which are good candidates for high capacity memory cells. The 51 papers presented here report the latest developments and new results and will greatly stimulate progress in high-tech technologies using perovskite materials.
As materials research focuses into finding ways to control the growth of atomic scale structures, there is correspondingly increasing emphasis on to the problem of surface diffusion. Clearly surface diffusion is the key process, which determines how atoms move on the surface. Controlling this motion can lead to the easy fabrication of well-controlled nanostructures broadening the present possibilities in nanotechnology. The paradigm of surface diffusion has outgrown its standard textbook description as a random walk on a rigid substrate. In real systems for more complex situations are encountered: interacting atoms are commonly present on the surface with their motions highly correlated, different phases form on the surface with different dynamics, large concentration gradients drive the system far away from the linear response regime, rich metastable structures form as a result of balanced interplay between different kinetic processes, substrate relaxation can change the energy landscape and the diffusion barriers, etc. The motivation behind this ARW was to bring together the international community working on these problems. We felt that the large number of researchers, new results, and well-formulated open questions in this area require some form of integration in a single forum. The ARW and the upcoming proceedings book with papers by the majority of the participants has provided this forum. The meeting was not planned as a continuation of the earlier NATO ASI in Rhodes in 1996, although several people have participated in both meetings.
Unraveling the mystery of the negative thermal expansion of liquid water has been a challenge for scientists for centuries. Various theories have been proposed so far, but none has been able to solve this mystery. Since the thermodynamic properties of matter are determined by the interaction between particles, the mystery can be solved fundamentally if the thermodynamic physical quantities using the laws of thermodynamics and statistical mechanics are determined, the experimental results are reproduced, and the phenomena in relation to the shape of the interaction between particles are elucidated. In this sense, this book has fundamentally unraveled this mystery. In addition, it discusses the mysteries of isothermal compressibility, structural diversity, as well as liquefaction and boiling points of water in relation to the shape of the interaction between particles. It carefully explains the analysis and calculation methods so that they can be easily understood by the readers.
This volume contains the Proceedings of the Third International Conference on Navier-Stokes Equations and Related Nonlinear Problems. The conference was held in Funchal (Madeira, Portugal), on May 21-27, 1994. In addition to the editor, the organizers were Carlos Albuquerque (FC, University of Lisbon), Casimiro Silva (University of Madeira) and Juha Videman (1ST, Technical University of Lisbon). This meeting, following two other successful events of similar type held in Thurnau (Germany) in 1992 and in Cento (Italy) in 1993, brought together, to the majestically beautiful island of Madeira, more than 60 specialists from all around the world, of which about two thirds were invited lecturers. The main interest of the meeting was focused on the mathematical analysis of nonlinear phenomena in fluid mechanics. During the conference, we noticed that this area seems to provide, today more than ever, challenging and increasingly important problems motivating the research of both theoretical and numerical analysts. This volume collects 32 articles selected from the invited lectures and contributed papers given during the conference. The main topics covered include: Flows in Unbounded Domains; Flows in Bounded Domains; Compressible Fluids; Free Boundary Problems; Non-Newtonian Fluids; Related Problems and Numerical Approximations. The contributions present original results or new surveys on recent developments, giving directions for future research. I express my gratitude to all the authors and I am glad to recognize the scientific level and the actual interest of the articles.
This work provides an introduction to astrophysical plasmas and fluids for graduate students of astronomy preparing either for a research career in the field or just aspiring to achieve a decent degree of familiarity with 99 per cent of the cosmos. The contents provide a representation of the phenomenal diversity of dominant roles that plasmas and fluids play in the near and far reaches of the universe. The breadth of coverage of basic physical processes is a feature of this textbook. By first using the Liouville equation to derive the single-fluid, two-fluid and kinetic descriptions of a plasma and a fluid, and then demonstrating the use of these descriptions for specific situations in the rest of the book, the author has chosen a different way of handling this large technical subject. The two major astrophysical issues, fluid or plasma configurations and their radiative signatures, figure prominently throughout the book. The problems are designed to give the reader a feel for the quantitative properties of celestial objects.
Shear Flows: Experimental Observations: The Mixing Transition in Free Shear Flows; A. Roshko. Vortex Shedding from Spheres at Subcritical Reynolds Number in Homogeneous and Stratified Fluid; P. Bonneton, et al. Nature of the Goertler Instability: A Forced Experiment; J.M. Chomaz, et al. Control Experiments: Control of Turbulent Shear Flows via Stationary Boundary Conditions; H.E. Fielder, et al. The Effects of External Excitation on the Reynolds-Averaged Quantities in a Turbulent Wall Jet; E. Horev, et al. Control of Organized Structures in Round Jets at High Reynolds Numbers; P.J.D. Juvet, et al. Numerical Experiments: Advances and Some Novel Experiments using Direct Numerical Simulations of Turbulence; P. Moin. Bubble Formation in Dense Fluidized Beds; J.A. Hernandez, et al. Three Dimensional Numerical Simulations of Coherent Structures in Free Shear Flows; M. Lesieur, et al. Closed Flows: Experiments: Effect of Noise on Bifurcations and Patterns in Dissipative Systems; G. Ahlers. Hexagonal Convective Cells; C. Perez-Garcia, et al. Theoretical Models: The NS and Related Equations: Vortex Dynamics and Turbulence; P.G. Saffman. Control of Boundary Layer and Dynamical Systems Theory: An Update; G. Berkooz, et al. 19 additional articles. Appendices. Index.
This volume contains the proceedings of the first NATO Science Forum "Highlights of the Eighties and Future Prospects in Condensed Matter Physics" (sponsored by the NATO Scientific Affairs Division), which took place in September, 1990, in the pleasant surroundings provided by the Hotel du Palais at Biarritz, France. One hundred distinguished physicists from seventeen countries, including six Nobellaureates, were invited to participate in the four and a half day meeting. Focusing on three evolving frontiers: semiconductor quantum structures, including the subject of the quantumHall effect (QHE), high temperature superconductivity (HiTc) and scanning tunneling microscopy (STM), the Forum provided an opportunity to evaluate, in depth, each of the frontiers, by reviewing the progress made during the last few years and, more importantly, exploring their implications for the future. Though serious scientists are not "prophets," all of the participants showed a strong interest in this unique format and addressed the questions of future prospects, either by extrapolating from what has been known, or by a stretch of their "educated" imagination.
This book takes an interface science approach to describe and understand the behavior of the dispersions we call emulsions, microemulsions and foams. The one thing all these dispersions have in common is the presence of surface-active species (surfactants) adsorbed at the interfaces between the two fluid phases that make up the emulsions, microemulsions or foams. The interfacial layers formed by the surfactants control most of the properties of the dispersions. The book describes the properties of interfacial layers, thin films and bulk fluids used in the elaboration of the various dispersions and it explains how such properties relate to the dispersion properties of these soft matter systems: structure, rheology and stability. These dispersion properties are far from being fully understood, in particular foam and emulsion stability. In discussing the state of the art of the current knowledge, the author draws interesting parallels between emulsions, microemulsions and foams that enlighten the interpretation of previous observations and point to a deeper understanding of the behavior of these materials in the future.
Freja is a joint Swedish and German satellite, launched on October 6, 1992 and orbiting at 600--1750 km, covering the lower part of the auroral acceleration region. It has been designed to provide high-resolution measurements (both temporal and spatial) of auroral plasma characteristics. The high telemetry rate, together with the 15 Mbyte distributed on-board memories allow Freja to resolve meso and micro-scale phenomena in the 100 m range for particles and 1--10 m range for electric and magnetic fields. The UV imager resolves auroral structures of 1 km size at a time resolution of one image every 6 s. The novel plasma instruments are orders of magnitude better than any that have gone before. The Freja Mission is about the scientific objectives, instruments and platform itself. Detailed descriptions are given of the instrumentation and the first data acquired. It is one of the very few books to contain such material in a single volume, relating the instruments' design with their in-flight characteristics. For space engineers and other researchers interested in space science.
This book presents generalized heat-conduction laws which, from a mesoscopic perspective, are relevant to new applications (especially in nanoscale heat transfer, nanoscale thermoelectric phenomena, and in diffusive-to-ballistic regime) and at the same time keep up with the pace of current microscopic research. The equations presented in the book are compatible with generalized formulations of nonequilibrium thermodynamics, going beyond the local-equilibrium. The book includes six main chapters, together with a preface and a final section devoted to the future perspectives, as well as an extensive bibliography.
The second edition offers an update on the single most comprehensive survey of the two intertwined fields of spintronics and magnetism, covering the diverse array of materials and structures, including silicon, organic semiconductors, carbon nanotubes, graphene, and engineered nanostructures. It focuses on seminal pioneering work, together with the latest in cutting-edge advances, notably extended discussion of two-dimensional materials beyond graphene, topological insulators, skyrmions, and molecular spintronics. The main sections cover physical phenomena, spin-dependent tunneling, control of spin and magnetism in semiconductors, and spin-based applications.
This volume contains the papers presented at the International Workshop on the Cur rent Problems in Condensed Matter: Theory and Experiment, held at Cocoyoc, More los, Mexico, during January 5-9, 1997. The participants had come from Argentina, Austria, Chile, England, France, Germany, Italy, Japan, Mexico, Switzerland, and the USA. The presentations at the Workshop provided state-of-art reviews of many of the most important problems, currently under study, in condensed matter. Equally important to all the participants in the workshop was the fact that we had come to honor a friend, Karl Heinz Bennemann, on his sixty-fifth birthday. This Festschrift is just a small measure of recognition of the intellectualleadership of Professor Bennemann in the field and equally important, as a sincere tribute to his qualities as an exceptional friend, college and mentor. Those who have had the privilege to work closely with Karl have been deeply touched by Karl's inquisitive scientific mind as well as by bis kindness and generosity."
The origin of optical methods for fluid flow investigations appears to be nontraceable. This is no matter for surprise. After all seeing provides the most direct and common way for humans to learn about their environment. But at the same time some of the most sophisticated methods for doing measurements in fluids are also based on light and often laser light. A very large amount of material has been published in this area over the last two decades. Why then another publication? Well, the field is still in a state of rapid development. It is characterised by the use of results and methods developed within very different areas like optical physics, spectroscopy, communication systems, electronics and computer science, mechanical engineering, chemical engineering and, of course, fluid dynamics. We are not aware of a book containing both introductory and more advanced material that covers the same material as presented here. The book is the result of a compilation and expansion of material presented at a summer school on Optical Diagnosticsfor Flow Processes, held at RiS0 National Laboratory and the Technical University of Denmark in September 1993. The aim of the course was to provide a solid background for understanding, evaluating, and using modem optical diagnostic methods, addressing Ph. D. students and researchers active in areas of fluid flow research. The disciplines represented by the participants ranged from atmospheric fluid dynamics to biomedicine
The Advanced Research Workshop (ARW) on Condensed Matter Re search Using Neutrons, Today and Tomorrow was held in Abingdon, Oxfordshire for four days beginning 26 March 1984. The Workshop was sponsored by NATO and the Rutherford Appleton Laboratory. A total of 32 lecturers and participants attended. An objective of the Workshop was to review some dynamic proper ties of condensed matter that can be studied using neutron spectros copy. A second objective, no less important, was to identify new topics that might be investigated with advanced spallation neutron sources. The twelve lectures reproduced in this volume bear wit ness, largely by themselves, to the success of the Workshop in meet ing these objectives. The many discussions generated by lecturers and participants meant that, in the event, the objectives were in deed amply satisfied. I should like to thank all those who attended the Horkshop for their part in making it so beneficial and rewarding. I am most grateful to Reinhard Scherm, who acted as my advisor in the organisation of the Workshop. The efforts of Mrs. M. Sherwen and Miss J. Harren made light my burden of administrative duties. The preparation of the manuscript for publication was simplified by the assistance of Miss C. Monypenny."
This book reflects the outcome of the 1st International Workshop on Turbulent Spray Combustion held in 2009 in Corsica (France). The focus is on reporting the progress of experimental and numerical techniques in two-phase flows, with emphasis on spray combustion. The motivation for studies in this area is that knowledge of the dominant phenomena and their interactions in such flow systems is essential for the development of predictive models and their use in combustor and gas turbine design. This necessitates the development of accurate experimental methods and numerical modelling techniques. The workshop aimed at providing an opportunity for experts and young researchers to present the state-of-the-art, discuss new developments or techniques and exchange ideas in the areas of experimentations, modelling and simulation of reactive multiphase flows. The first two papers reflect the contents of the invited lectures, given by experts in the field of turbulent spray combustion. The first concerns computational issues, while the second deals with experiments. These lectures initiated very interesting and interactive discussions among the researchers, further pursued in contributed poster presentations. Contributions 3 and 4 focus on some aspects of the impact of the interaction between fuel evaporation and combustion on spray combustion in the context of gas turbines, while the final article deals with the interaction between evaporation and turbulence.
This monograph discusses the essential principles of the evaporationprocess by looking at it at the molecular and atomic level. In the first part methods of statistical physics, physical kinetics andnumerical modeling are outlined including the Maxwell's distributionfunction, the Boltzmann kinetic equation, the Vlasov approach, and theCUDA technique. The distribution functions of evaporating particles are then defined.Experimental results on the evaporation coefficient and the temperaturejump on the evaporation surface are critically reviewed and compared tothe theory and numerical results presented in previous chapters. The book ends with a chapter devoted to evaporation in differentprocesses, such as boiling and cavitation.This monograph addressesgraduate students and researchers working on phase transitions andrelated fields. |
![]() ![]() You may like...
Abiotic Stress Responses in Plants…
Parvaiz Ahmad, M.N.V. Prasad
Hardcover
Dentition - According to Some of the…
Alexander Christian Becker
Paperback
R406
Discovery Miles 4 060
Life Cycle Assessment in the Agri-food…
Bruno Notarnicola, Roberta Salomone, …
Hardcover
Legumes Research - Volume 1
Jose C Jimenez-Lopez, Alfonso Clemente
Hardcover
R3,605
Discovery Miles 36 050
Accelerated Plant Breeding, Volume 1…
Satbir Singh Gosal, Shabir Hussain Wani
Hardcover
R4,657
Discovery Miles 46 570
|