![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > States of matter
Provides a practical, experimentally-driven introduction to the materials science of surfaces and thin films Connects the essential concepts with the variables controlled in a laboratory setting, to aid in understanding experimental design and results Takes a visual approach with many illustrations of experimental deposition and characterization techniques to highlight what happens at the atomic level on surfaces and thin films Includes worked examples and problems at the end of each chapter Gives conceptually clear, mathematically simple explanations
This series of books, which is published at the rate of about one per year, addresses fundamental problems in materials science. The contents cover a broad range of topics from small clusters of atoms to engineering materials and involve chemistry, physics, and engineering, with length scales ranging from Angstroms up to millimeters. The emphasis is on basic science rather than on applications. Each book focuses on a single area of current interest and brings together leading experts to give an up-to-date discussion of their work and the work of others. Each article contains enough references that the interested reader can access the relevant literature. Thanks are given to the Center for Fundamental Materials Research at Michigan State University for supporting this series. M. F. Thorpe, Series Editor E-mail: thorpe@pa. msu. edu v PREFACE th th During the period 4 -8 August 1996, a conference with the same title as this book was held in Traverse City, Michigan. That conference was organized as a sequel to an interesting and successful WEM workshop in a similar area run by Profs. Hans Bonzel and Bill Mullins in May 1995. This book contains papers presented at the Traverse City conference. The book focuses on: atomic processes, step structure and dynamics; and their effect on surface and interface structures and on the relaxation kinetics of larger leng- scale nonequilibrium morphologies."
"Since 1954 Advances in Cryogenic Engineering has been the archival publication of papers presented at the biennial CEC/ICMC conferences. Advances in Cryogenic Engineering resides throughout the world in the libraries of most institutions that conduct research and development in cryogenic engineering and applied superconductivity. The publication includes invited, unsolicited, and government-sponsored research papers in the research areas of superconductors and structural materials for cryogenic applications. All of the papers published must (1) be presented at the conference, (2) pass the review process, and (3) report previously unpublished theoretical studies, reviews, or measurements of material properties at low temperatures." Victoria A. Bardos, Managing Editor
Ion implantation offers one of the best examples of a topic that starting from the basic research level has reached the high technology level within the framework of microelectronics. As the major or the unique procedure to selectively dope semiconductor materials for device fabrication, ion implantation takes advantage of the tremendous development of microelectronics and it evolves in a multidisciplinary frame. Physicists, chemists, materials sci entists, processing, device production, device design and ion beam engineers are all involved in this subject. The present monography deals with several aspects of ion implantation. The first chapter covers basic information on the physics of devices together with a brief description of the main trends in the field. The second chapter is devoted to ion im planters, including also high energy apparatus and a description of wafer charging and contaminants. Yield is a quite relevant is sue in the industrial surrounding and must be also discussed in the academic ambient. The slowing down of ions is treated in the third chapter both analytically and by numerical simulation meth ods. Channeling implants are described in some details in view of their relevance at the zero degree implants and of the available industrial parallel beam systems. Damage and its annealing are the key processes in ion implantation. Chapter four and five are dedicated to this extremely important subject."
This book focuses on the metallic Nano- and Micro-materials (NMMs) fabricated by physical techniques such as atomic diffusion. A new technology for fabricating NMMs by atomic diffusion is presented. Two kinds of atomic diffusion are treated; one is a phenomenon caused by electron flow in high density and called electromigration and the other is stress migration which depends on a gradient of hydrostatic stress in a material. In three parts, the book describes the theory of atomic diffusion, the evaluation of physical properties and the treatment and applications of metallic NNMS. The new methods such as atomic diffusion are expected are expected to be crucial for the fabrication of NNMs in the future and to partially replace methods based on chemical reactions.
Frontiers in Fusion Research provides a systematic overview of the latest physical principles of fusion and plasma confinement. It is primarily devoted to the principle of magnetic plasma confinement, that has been systematized through 50 years of fusion research. Frontiers in Fusion Research begins with an introduction to the study of plasma, discussing the astronomical birth of hydrogen energy and the beginnings of human attempts to harness the Sun's energy for use on Earth. It moves on to chapters that cover a variety of topics such as: * charged particle motion, * plasma kinetic theory, * wave dynamics, * force equilibrium, and * plasma turbulence. The final part of the book describes the characteristics of fusion as a source of energy and examines the current status of this particular field of research. Anyone with a grasp of basic quantum and analytical mechanics, especially physicists and researchers from a range of different backgrounds, may find Frontiers in Fusion Research an interesting and informative guide to the physics of magnetic confinement.
Imaging and Manipulating Molecular Orbitals celebrates the 60th anniversary of the first image of a single molecule by E. Muller. This book summarizes the advances in the field from various groups around the world who use a broad range of experimental techniques: scanning probe microscopy (STM and AFM), field emission microscopy, transmission electron microscopy, attosecond tomography and photoemission spectroscopy. The book is aimed at those who are interested in the field of molecular orbital imaging and manipulation. Included in the book are a variety of experimental techniques in combination with theoretical approaches which describe the spatial distribution and energies of the molecular orbitals. The goal is to provide the reader with an up-to-date summary on the latest developments in this field from various points of view.
This book focuses on the modern development of techniques for analysis of the hierarchical structure of polymers from both the experimental and theoretical points of view. Starting with molecular and crystal symmetry, the author explains fundamental and professional methods, such as wide- and small-angle X-ray scattering, neutron diffraction, electron diffraction, FTIR and Raman spectroscopy, NMR, and synchrotron radiation. In addition, the author explains another indispensable method, computer simulation, which includes energy calculation, lattice dynamics, molecular dynamics, and quantum chemistry. These various methods are described in a systematic way so that the reader can utilize them for the purpose of 3D structure analysis of polymers. Not only such analytical knowledge but also the preparation techniques of samples necessary for these measurements and the methods of analyzing the experimental data collected in this way are given in a concrete manner. Examples are offered to help master the principles of how to clarify the static structures and dynamic structural changes in the phase transitions of various kinds of crystalline polymers that are revealed by these novel methods. The examples are quite useful for readers who want to apply these techniques in finding practical solutions to concrete problems that are encountered in their own research. The principal audience for this book is made up of young professional researchers including those working in industry, but it can also be used as an excellent reference for graduate-level students. This book is the first volume of a two-volume set with Structural Science of Crystalline Polymers: A Microscopically Viewed Structure-Property Relationship being the second volume by the same author.
E se non che di cid son vere prove A nd were it not for the true evidence Per piti e piti autori, che sa,ra. nno Of many authors who will be Per i miei versi nominati altrove, Mentioned elsewhere in my rhyme Non presterei alla penna 10. mana I would not lend my hand to the pen Per nota1' cid ch'io vidi, can temenza And describe my observations, for fear ehe non fosse do. altri casso e van 0; That they would be rejected and in vane; Mala lor chiara. e vera. esperienza But these authors' clear and true experience Mi assicura. nel dir, come persone Encourages me to report, since they Degne di fede ad ogni gra. n sentenza. Should always be trusted for their word. [From" Dittamondo", by Fazio degli UbertiJ Heterojunction interfaces, the interfaces between different semiconducting materi- als, have been extensively explored for over a quarter of a century. The justifica- tion for this effort is clear - these interfaces could become the building blocks of lllany novel solid-state devices. Other interfaces involving semiconductors are al- ready widely used in technology, These are, for example, metal-semiconductor and insulator-semiconductor junctions and hOll1ojunctions. In comparison, the present applications of heterojunction int. erfaces are limited, but they could potentially becOlne lnuch lllore ext. ensive in the neal' future. The path towards the widespread use of heterojunctions is obstructed by several obstacles.
-Polyelectrolyte Stars and Cylindrical Brushes By Y. Xu, F. Plamper, M. Ballauff, and A. H. E. Muller -Various Aspects of the Interfacial Self-Assembly of Nanoparticles By N. Popp, S. Kutuzov, A. Boker -Holographic Gratings and Data Storage in Azobenzene-Containing Block Copolymers and Molecular Glasses By H. Audorff, K. Kreger, R. Walker, D. Haarer, L. Kador, and H.-W. Schmidt -Donor-Acceptor Block Copolymers with Nanoscale Morphology for Photovoltaic Applications By M. Sommer, S. Huettner, and M. Thelakkat -Recent Advances in the Improvement of Polymer Electret Films By D. P. Erhard, D. Lovera, C. von Salis-Soglio, R. Giesa, V. Altstadt, and H.-W. Schmidt
The Tenth International Symposium on Continuum Models and Discrete Systems (CMDSIO) took place at the Shoresh Holiday Complex in Shoresh, Israel, near the Capital City Jerusalem, from 30 June until 4 July 2003. The previous symposia in this series were: CMDS 1 (Kielce, Poland, 1975) CMDS2 (Mont Gabriel, Canada, 1977) CMDS3 (Freudenstadt, German Federal Republic, 1979) CMDS4 (Stockholm, Sweden, 1981) CMDS5 (Nottingham, England, 1985) CMDS6 (Dijon, France, 1989) CMDS7 (Paderborn, Germany, 1992) CMDS8 (Varna, Bulgaria, 1995) CMDS9 (Istanbul, Turkey, 1998) As in the previous symposia, participation was by invitation from the Inter- national Scientific Committee. Participants were chosen from a list of recom- mendations of the committee members, as well as from applications following advertisement of the symposium on the internet and in email messages to po- tential participants. The members of the International Scientific Committee were: Karl-Heinz Anthony CMDS7 Chairman (University ofPaderborn, Germany) David J. Bergman, Conference Chairman (Tel Aviv University, Israel) Bikas K. Chakrabatii (Saha Institute of Nuclear Physics Calcutta, West Bengal, India) Hans Jurgen Herrmann (University of Stuttgart, Germany; and ESPCI, Paris, France) Esin Inan, CMDS9 Chairwoman (Istanbul Technical University, Istanbul, Turkey) Dominique Jeulin (ENSMP, Fontainebleau, France) Mark Kachanov (Tufts University, Boston, MA, USA) David Kinderlehrer (Carnegie-Mellon University, Pittsburgh, PA, USA) Arnold M. Kosevich (B. Verkin Institute for Low Temperature Physics, Khat"kov, Ukraine) Valery M. Levin (Petrozavodsk State University, Petrozavodsk, Russia) Konstantin Z.
Thin films have an extremely broad range of applications from electronics and optics to new materials and devices. Collaborative and multidisciplinary efforts from physicists, materials scientists, engineers and others have established and advanced a field with key pillars constituting (i) the synthesis and processing of thin films, (ii) the understanding of physical properties in relation to the nanometer scale, (iii) the design and fabrication of nano-devices or devices with thin film materials as building blocks, and (iv) the design and construction of novel tools for characterization of thin films.Against the backdrop of the increasingly interdisciplinary field, this book sets off to inform the basics of thin film physics and thin film devices. Readers are systematically introduced to the synthesis, processing and application of thin films; they will also study the formation of thin films, their structure and defects, and their various properties - mechanical, electrical, semiconducting, magnetic, and superconducting. With a primary focus on inorganic thin film materials, the book also ventures on organic materials such as self-assembled monolayers and Langmuir-Blodgett films.This book will be effective as a teaching or reference material in the various disciplines, ranging from Materials Science and Engineering, Electronic Science and Engineering, Electronic Materials and Components, Semiconductor Physics and Devices, to Applied Physics and more. The original Chinese publication has been instrumental in this purpose across many Chinese universities and colleges.
This book presents the high-precision analysis of ground states and low-energy excitations in fractional quantum Hall states formed by Dirac electrons, which have attracted a great deal of attention. In particular the author focuses on the physics of fractional quantum Hall states in graphene on a hexagonal boron nitride substrate, which was recently implemented in experiments. The numerical approach employed in the book, which uses an exact numerical diagonalization of an effective model Hamiltonian on a Haldane's sphere based on pseudopotential representation of electron interaction, provides a better understanding of the recent experiments. The book reviews various aspects of quantum Hall effect: a brief history, recent experiments with graphene, and fundamental theories on integer and fractional Hall effects. It allows readers to quickly grasp the physics of quantum Hall states of Dirac fermions, and to catch up on latest research on the quantum Hall effect in graphene.
The contrasting examples of microwave plasmas given in this volume demonstrate their capability of not only covering the totality of expressed needs in that particular field, but in many others. For example the ions and reactive neutral species, indispensable for the synergetic effects in etching and deposition processes can be used in metallurgical treatment, and for materials processing in general. They also have the ability to dissociate molecules and excite atoms as required in analytical chemistry where the information on the constituent concentrations is obtained through optical spectroscopy or mass spectrometry. Finally, microwave plasmas can supply the photons for laser and lighting applications. It is noteworthy that microwave plasmas cover an impressive pressure range of eight orders of magnitude from 10-3 Pa (10-5 torr) to above atmospheric pressure. The versatility of microwave plasmas, their moderate cost, and their ease of implementation particularly appeal to the industrial entrepreneur.
'Felix Flicker brilliantly reveals the secrets behind the modern-day magic we call physics' Marcus du Sautoy 'The world is already telling you its spells; the purpose of this book is to help you listen' Imagine you had a crystal that lit upon your command: magic must be at work, and you must surely be a wizard. But what if you discovered that you routinely cast such spells? Are the spells no longer magic ... or are you a wizard? The modern term for wizardry is condensed matter physics. It is the study of the world around us - the states of matter and how they emerge from the quantum realm. Thanks to its practical magic we can make lasers which cut through solid metal, trains which hover in mid-air, and crystals which light our homes. It is one of the best-kept secrets in science; a third of all physicists work on it, yet its story has never been told. Join Felix Flicker as he introduces the magic of condensed matter physics. It will be a journey that reveals the subtle spells that conjure crystals from chaos and create new particles that have never before existed. The Magick of Matter will revolutionise what you know about physics and reality; you'll never see the world in the same way again.
Cosmic electrodynamics is the specific branch of plasma physics which studies electromagnetic phenomena -- mostly the role of electromagnetic forces in dynamics of highly-conducting compressible medium in the solar interior and atmosphere, solar wind, in the Earth's magnetosphere and magnetospheres of other planets as well as pulsars and other astrophysical objects. This textbook is written to be used at several different levels. It is aimed primarily at beginning graduate students who are assumed to have a knowledge of basic physics. Starting from the language of plasma physics, from Maxwell's equations, the author guides the reader into the more specialized concepts of cosmic electrodynamics. The main attention in the book is paid to physics rather than maths. However, the clear mathematical image of physical processes in space plasma is presented and spelled out in the surrounding text. There is not another way to work in modern astrophysics at the quantitative level. The book will also be useful for professional astronomers and for specialists, who investigate cosmic plasmas from space, as well as for everybody who is interested in modern astrophysics.
Quantum wires are artificial structures characterized by nanoscale cross sections that contain charged particles moving along a single degree of freedom. With electronic motions constrained into standing modes along with the two other spatial directions, they have been primarily investigated for their unidimensional dynamics of quantum-confined charge carriers, which eventually led to broad applications in large-scale nanoelectronics. This book is a compilation of articles that span more than 30 years of research on developing comprehensive physical models that describe the physical properties of these unidimensional semiconductor structures. The articles address the effect of quantum confinement on lattice vibrations, carrier scattering rates, and charge transport as well as present practical examples of solutions to the Boltzmann equation by analytical techniques and by numerical simulations such as the Monte Carlo method. The book also presents topics on quantum transport and spin effects in unidimensional molecular structures such as carbon nanotubes and graphene nanoribbons in terms of non-equilibrium Green’s function approaches and density functional theory.
Clusters and nanoscale materials give rise to properties and behaviour that are governed by size restrictions, and hence display features directly attributable to quantum confinement. Thus they represent ideal media for observing and studying quantum phenomena. This book presents and evaluates some of the latest developments in this area of basic research. Each of the chapters focuses on selected aspects of the field, and the authors endeavour to display the breadth of the subject by presenting some of the important recent advances that have been made through the use of new experimental techniques and theoretical approaches.
This book provides a comprehensive look at the state of the art of externally driven and self-generated rotation as well as momentum transport in tokamak plasmas. In addition to recent developments, the book includes a review of rotation measurement techniques, measurements of directly and indirectly driven rotation, momentum sinks, self-generated flow, and momentum transport. These results are presented alongside summaries of prevailing theory and are compared to predictions, bringing together both experimental and theoretical perspectives for a broad look at the field. Both researchers and graduate students in the field of plasma physics will find this book to be a useful reference. Although there is an emphasis on tokamaks, a number of the concepts are also relevant to other configurations.
This book is devoted to interfaces between two fluids, that is, between a liquid and a gas (such as water and air) or between two liquids (such as water and oil). The main motivation for the book is twenty years of experimentation in the microgravity environment of space, and the associated theory. This unique environment has made possible numerous qualitative and quantitative observations of effects that are masked by gravity on earth. Large liquid surfaces have been created and their stability and dynamics have been studied. The experimental insights gained have, in turn, strongly stimulated further theoretical and mathematical investigations. Advancing and receding contact angles, wetting barriers, pinning of contact lines, oscillations of capillary surfaces and fluid sloshing are also discussed.
Condensed-matter physics plays an ever increasing role in photonics, electronic and atomic collisions research. Dispersion (Dynamics and Relaxation) includes scattering/collisions in the gaseous phase. It also includes thermal agitation, tunneling and relaxation in the liquid and solid phases. Classical mechanics, classical statistical mechanics, classical relativity and quantum mechanics are all implicated. 'Semiclassical' essentially means that there is a large or asymptotic real parameter. 'Semiclassical' can also mean 'classical with first-order quantal correction', based on an exponentiated Liouville series commencing with a simple pole in the -plane, being Planck's reduced constant and coming with all the attendant connection problems associated with the singularity at the turning or transition point and with the Stokes phenomenon. Equally,' semiclassical' can mean 'electrons described quantally and the heavy particles classically'. This latter gives rise to the so-called impact parameter method based on a pre-assigned classical trajectory. With evermore sophisticated experiments, it has become equally more important to test theory over a wider range of parameters. For instance, at low impact energies in heavy-particle collisions, the inverse velocity is a large parameter; in single-domain ferromagnetism, thermal agitation (including Brownian motion and continuous-time random walks) is faced with a barrier of height 'sigma', a possibly large parameter. Methods of solution include phase-integral analysis, integral transforms and change-of-dependent variable. We shall consider the Schroedinger time-independent and time-dependent equations, the Dirac equation, the Fokker Planck equation, the Langevin equation and the equations of Einstein's classical general relativity equations. There is an increasing tendency among physicists to decry applied mathematics and theoretical physics in favour of computational blackboxes. One may say applied mathematics concerns hard sums and products (and their inverses) but unless one can simplify and sum infinite series of products of infinite series, can one believe the results of a computer program? The era of the polymath has passed; this book proposal aims to show the relevance to, and impact of theory on, laboratory scientists.
Within nonlinear spatio-temporal dynamics, active lattice systems are of relevance to the study of multi-dimensional dynamical systems and the theory of nonlinear waves and dis- sipative structures of extended systems. In this book, the authors deal with basic concepts and models, with methodolo- gies for studying the existence and stability of motions, understanding the mechanisms of formation of patterns and waves, their propagation and interactions in active lattice systems, and about how much cooperation or competition bet- ween order and chaos is crucial for synergetic behavior and evolution. The results described in the book have both in- ter- and trans-disciplinary features and a fundamental cha- racter. It is a textbook for graduate courses in nonlinear sciences, including physics, biophysics, biomathematics, bioengineering, neurodynamics, electrical and electronic engineering, mathematical economics, and computer sciences.
This book examines the physical principles behind the operation of high-speed transistors operating at frequencies above 10 GHz and having switching times less than 100 psec. If the 1970s cannot be remembered for the opportunities for creating and extensively using transistors operating at such high speeds, then, the situation has changed radically because of rapid progress in sub micrometer technology for manufacturing transistors and integrated circuits from GaAs and other semiconductor materials and the powerful influx of new physical concepts. Not only have transistors having switching speeds of 50-100 psec operating in the 10-20 GHz region been created in recent years, but the possibilities for manufacturing transistors operating one to two orders of magnitude faster have been revealed. As superhigh-speed transistors have been created, many of the most important areas of technology such as communications, computing technology, television, radar, and the manufacture of scientific, industrial, and medical equipment have qualitatively changed. Microwave transistors operating at millimeter wavelengths make it possible to produce compact and highly efficient equipment for communications and radar technology. Transistors with switching speeds better than 10-100 psec make it possible to increase the speed of microprocessors and other computer components to tens of billions of operations per second and thereby solve one of the most pressing problems of modern electronics - increasing the speed of digital information processing.
Properties of systems with long range interactions are still poorly understood despite being of importance in most areas of physics. The present volume introduces and reviews the effort of constructing a coherent thermodynamic treatment of such systems by combining tools from statistical mechanics with concepts and methods from dynamical systems. Analogies and differences between various systems are examined by considering a large range of applications, with emphasis on Bose--Einstein condensates. Written as a set of tutorial reviews, the book will be useful for both the experienced researcher as well as the nonexpert scientist or postgraduate student. |
![]() ![]() You may like...
Crop Improvement - Sustainability…
Siti Nor Akmar Abdullah, Chai Ling Ho, …
Hardcover
R6,961
Discovery Miles 69 610
|