0
Your cart

Your cart is empty

Browse All Departments
Price
  • R100 - R250 (7)
  • R250 - R500 (15)
  • R500+ (6,125)
  • -
Status
Format
Author / Contributor
Publisher

Books > Science & Mathematics > Physics > States of matter

High Temperature Superconductivity - The Road to Higher Critical Temperature (Paperback, Softcover reprint of the original 1st... High Temperature Superconductivity - The Road to Higher Critical Temperature (Paperback, Softcover reprint of the original 1st ed. 2015)
Shin-ichi Uchida
R1,823 Discovery Miles 18 230 Ships in 10 - 15 working days

This book presents an overview of material-specific factors that influence Tc and give rise to diverse Tc values for copper oxides and iron-based high- Tc superconductors on the basis of more than 25 years of experimental data, to most of which the author has made important contributions. The book then explains why both compounds are distinct from others with similar crystal structure and whether or not one can enhance Tc, which in turn gives a hint on the unresolved pairing mechanism. This is an unprecedented new approach to the problem of high-temperature superconductivity and thus will be inspiring to both specialists and non-specialists interested in this field. Readers will receive in-depth information on the past, present, and future of high-temperature superconductors, along with special, updated information on what the real highest Tc values are and particularly on the possibility of enhancing Tc for each member material, which is important for application. At this time, the highest Tc has not been improved for 20 years, and no new superconductors have been discovered for 5 years. This book will encourage researchers as well as graduate-course students not to give up on the challenges in the future of high- Tc superconductivity.

Sand Control in Well Construction and Operation (Paperback, Softcover reprint of the original 1st ed. 2012): Davorin Matanovic,... Sand Control in Well Construction and Operation (Paperback, Softcover reprint of the original 1st ed. 2012)
Davorin Matanovic, Marin Cikes, Bojan Moslavac
R2,957 Discovery Miles 29 570 Ships in 10 - 15 working days

Produced sand causes a lot of problems. From that reasons sand production must be monitored and kept within acceptable limits. Sand control problems in wells result from improper completion techniques or changes in reservoir properties. The idea is to provide support to the formation to prevent movement under stresses resulting from fluid flow from reservoir to well bore. That means that sand control often result with reduced well production. Control of sand production is achieved by: reducing drag forces (the cheapest and most effective method), mechanical sand bridging (screens, gravel packs) and increasing of formation strength (chemical consolidation). For open hole completions or with un-cemented slotted liners/screens sand failure will occur and must be predicted. Main problem is plugging. To combat well failures due to plugging and sand breakthrough Water-Packing or Shunt-Packing are used.

Quantum Kinetic Theory (Paperback, Softcover reprint of the original 2nd ed. 2016): Michael Bonitz Quantum Kinetic Theory (Paperback, Softcover reprint of the original 2nd ed. 2016)
Michael Bonitz
R4,318 Discovery Miles 43 180 Ships in 10 - 15 working days

This book presents quantum kinetic theory in a comprehensive way. The focus is on density operator methods and on non-equilibrium Green functions. The theory allows to rigorously treat nonequilibrium dynamics in quantum many-body systems. Of particular interest are ultrafast processes in plasmas, condensed matter and trapped atoms that are stimulated by rapidly developing experiments with short pulse lasers and free electron lasers. To describe these experiments theoretically, the most powerful approach is given by non-Markovian quantum kinetic equations that are discussed in detail, including computational aspects.

Fundamental Aspects of Plasma Chemical Physics - Kinetics (Paperback, Softcover reprint of the original 1st ed. 2016): Mario... Fundamental Aspects of Plasma Chemical Physics - Kinetics (Paperback, Softcover reprint of the original 1st ed. 2016)
Mario Capitelli, Roberto Celiberto, Gianpiero Colonna, Fabrizio Esposito, Claudine Gorse, …
R5,470 Discovery Miles 54 700 Ships in 10 - 15 working days

Describing non-equilibrium "cold" plasmas through a chemical physics approach, this book uses the state-to-state plasma kinetics, which considers each internal state as a new species with its own cross sections. Extended atomic and molecular master equations are coupled with Boltzmann and Monte Carlo methods to solve the electron energy distribution function. Selected examples in different applied fields, such as microelectronics, fusion, and aerospace, are presented and discussed including the self-consistent kinetics in RF parallel plate reactors, the optimization of negative ion sources and the expansion of high enthalpy flows through nozzles of different geometries. The book will cover the main aspects of the state-to-state kinetic approach for the description of nonequilibrium cold plasmas, illustrating the more recent achievements in the development of kinetic models including the self-consistent coupling of master equations and Boltzmann equation for electron dynamics. To give a complete portrayal, the book will assess fundamental concepts and theoretical formulations, based on a unified methodological approach, and explore the insight in related scientific problems still opened for the research community.

Particulate Products - Tailoring Properties for Optimal Performance (Paperback, Softcover reprint of the original 1st ed.... Particulate Products - Tailoring Properties for Optimal Performance (Paperback, Softcover reprint of the original 1st ed. 2014)
Henk G. Merkus, Gabriel M. H. Meesters
R4,413 Discovery Miles 44 130 Ships in 10 - 15 working days

Particulate products make up around 80% of chemical products, from all industry sectors. Examples given in this book include the construction materials, fine ceramics and concrete; the delicacies, chocolate and ice cream; pharmaceutical, powders, medical inhalers and sun screen; liquid and powder paints. Size distribution and the shape of the particles provide for different functionalities in these products. Some functions are general, others specific. General functions are powder flow and require - at the typical particulate concentrations of these products - that the particles cause adequate rheological behavior during processing and/or for product performance. Therefore, this book addresses particle packing as well as its relation to powder flow and rheological behavior. Moreover, general relationships to particle size are discussed for e.g. color and sensorial aspects of particulate products. Product-specific functionalities are often relevant for comparable product groups. Particle size distribution and shape provide, for example, the following functionalities: - dense particle packing in relation to sufficient strength is required in concrete construction, ceramic objects and pharmaceutical tablets - good sensorial properties (mouthfeel) to chocolate and ice cream - effective dissolution, flow and compression properties for pharmaceutical powders - adequate hiding power and effective coloring of paints for protection and the desired esthetical appeal of the objects - adequate protection of our body against sun light by sunscreen - effective particle transport and deposition to desired locations for medical inhalers and powder paints. Adequate particle size distribution, shape and porosity of particulate products have to be achieved in order to reach optimum product performance. This requires adequate management of design and development as well as sufficient knowledge of the underlying principles of physics and chemistry. Moreover, flammability, explosivity and other health hazards from powders, during handling, are taken into account. This is necessary, since great risks may be involved. In all aspects, the most relevant parameters of the size distribution (and particle shape) have to be selected. In this book, experts in the different product fields have contributed to the product chapters. This provides optimum information on what particulate aspects are most relevant for behavior and performance within specified industrial products and how optimum results can be obtained. It differs from other books in the way that the critical aspects of different products are reported, so that similarities and differences can be identified. We trust that this approach will lead to improved optimization in design, development and quality of many particulate products.

Relativistic Nonlinear Electrodynamics - The QED Vacuum and Matter in Super-Strong Radiation Fields (Paperback, Softcover... Relativistic Nonlinear Electrodynamics - The QED Vacuum and Matter in Super-Strong Radiation Fields (Paperback, Softcover reprint of the original 2nd ed. 2016)
Hamlet Karo Avetissian
R4,557 Discovery Miles 45 570 Ships in 10 - 15 working days

This revised edition of the author's classic 2006 text offers a comprehensively updated review of the field of relativistic nonlinear electrodynamics. It explores the interaction of strong and super-strong electromagnetic/laser radiation with the electromagnetic quantum vacuum and diverse types of matter - including free charged particles and antiparticles, acceleration beams, plasma and plasmous media. The appearance of laser sources of relativistic and ultra-relativistic intensities over the last decade has stimulated investigation of a large class of processes under such super-strong radiation fields. Revisions for this second edition reflect these developments and the book includes new chapters on Bremsstrahlung and nonlinear absorption of superintense radiation in plasmas, the nonlinear interaction of relativistic atoms with intense laser radiation, nonlinear interaction of strong laser radiation with Graphene, and relativistic nonlinear phenomena in solid-plasma targets under supershort laser pulses of ultrarelativistic intensities. The only book devoted to the subject of relativistic nonlinear electrodynamics, this second edition will be a valuable resource for graduate students and researchers involved in any aspect of the field, including those working with intense x-ray - gamma-ray lasers, the new generation of small size laser-plasma accelerators of superhigh energies and high-brightness particle beams.

CHIPS 2020 VOL. 2 - New Vistas in Nanoelectronics (Paperback, Softcover reprint of the original 1st ed. 2016): Bernd Hoefflinger CHIPS 2020 VOL. 2 - New Vistas in Nanoelectronics (Paperback, Softcover reprint of the original 1st ed. 2016)
Bernd Hoefflinger
R2,604 Discovery Miles 26 040 Ships in 10 - 15 working days

The release of this second volume of CHIPS 2020 coincides with the 50th anniversary of Moore's Law, a critical year marked by the end of the nanometer roadmap and by a significantly reduced annual rise in chip performance. At the same time, we are witnessing a data explosion in the Internet, which is consuming 40% more electrical power every year, leading to fears of a major blackout of the Internet by 2020. The messages of the first CHIPS 2020, published in 2012, concerned the realization of quantum steps for improving the energy efficiency of all chip functions. With this second volume, we review these messages and amplify upon the most promising directions: ultra-low-voltage electronics, nanoscale monolithic 3D integration, relevant-data, brain- and human-vision-inspired processing, and energy harvesting for chip autonomy. The team of authors, enlarged by more world leaders in low-power, monolithic 3D, video, and Silicon brains, presents new vistas in nanoelectronics, promising Moore-like exponential growth sustainable through to the 2030s.

Dynamics of Magnetically Trapped Particles - Foundations of the Physics of Radiation Belts and Space Plasmas (Paperback,... Dynamics of Magnetically Trapped Particles - Foundations of the Physics of Radiation Belts and Space Plasmas (Paperback, Softcover reprint of the original 2nd ed. 2014)
Juan G. Roederer, Hui Zhang
R4,831 Discovery Miles 48 310 Ships in 10 - 15 working days

This book is a new edition of Roederer's classic Dynamics of Geomagnetically Trapped Radiation, updated and considerably expanded. The main objective is to describe the dynamic properties of magnetically trapped particles in planetary radiation belts and plasmas and explain the physical processes involved from the theoretical point of view. The approach is to examine in detail the orbital and adiabatic motion of individual particles in typical configurations of magnetic and electric fields in the magnetosphere and, from there, derive basic features of the particles' collective "macroscopic" behavior in general planetary environments. Emphasis is not on the "what" but on the "why" of particle phenomena in near-earth space, providing a solid and clear understanding of the principal basic physical mechanisms and dynamic processes involved. The book will also serve as an introduction to general space plasma physics, with abundant basic examples to illustrate and explain the physical origin of different types of plasma current systems and their self-organizing character via the magnetic field. The ultimate aim is to help both graduate students and interested scientists to successfully face the theoretical and experimental challenges lying ahead in space physics in view of recent and upcoming satellite missions and an expected wealth of data on radiation belts and plasmas.

Frontiers and Challenges in Warm Dense Matter (Paperback, Softcover reprint of the original 1st ed. 2014): Frank Graziani,... Frontiers and Challenges in Warm Dense Matter (Paperback, Softcover reprint of the original 1st ed. 2014)
Frank Graziani, Michael P. Desjarlais, Ronald Redmer, Samuel B. Trickey
R5,358 Discovery Miles 53 580 Ships in 10 - 15 working days

Warm Dense Matter (WDM) occupies a loosely defined region of phase space intermediate between solid, liquid, gas, and plasma, and typically shares characteristics of two or more of these phases. WDM is generally associated with the combination of strongly coupled ions and moderately degenerate electrons, and careful attention to quantum physics and electronic structure is essential. The lack of a small perturbation parameter greatly limits approximate attempts at its accurate description. Since WDM resides at the intersection of solid state and high energy density physics, many high energy density physics (HEDP) experiments pass through this difficult region of phase space. Thus, understanding and modeling WDM is key to the success of experiments on diverse facilities. These include the National Ignition Campaign centered on the National Ignition Facility (NIF), pulsed-power driven experiments on the Z machine, ion-beam-driven WDM experiments on the NDCX-II, and fundamental WDM research at the Linear Coherent Light Source (LCLS). Warm Dense Matter is also ubiquitous in planetary science and astrophysics, particularly with respect to unresolved questions concerning the structure and age of the gas giants, the nature of exosolar planets, and the cosmochronology of white dwarf stars. In this book we explore established and promising approaches to the modeling of WDM, foundational issues concerning the correct theoretical description of WDM, and the challenging practical issues of numerically modeling strongly coupled systems with many degrees of freedom.

Computer Simulation Tools for X-ray Analysis - Scattering and Diffraction Methods (Paperback, Softcover reprint of the original... Computer Simulation Tools for X-ray Analysis - Scattering and Diffraction Methods (Paperback, Softcover reprint of the original 1st ed. 2016)
Sergio Luiz Morelhao
R3,104 Discovery Miles 31 040 Ships in 10 - 15 working days

This book teaches the users on how to construct a library of routines to simulate scattering and diffraction by almost any kind of samples. The main goal of this book is to break down the huge barrier of difficulties faced by beginners from many fields (Engineering, Physics, Chemistry, Biology, Medicine, Material Science, etc.) in using X-rays as an analytical tool in their research. Besides fundamental concepts, MatLab routines are provided, showing how to test and implement the concepts. The major difficult in analysing materials by X-ray techniques is that it strongly depends on simulation software. This book teaches the users on how to construct a library of routines to simulate scattering and diffraction by almost any kind of samples. It provides to a young student the knowledge that would take more than 20 years to acquire by working on X-rays and relying on the available textbooks. The scientific productivity worldwide is growing at a breakneck pace, demanding ever more dynamic approaches and synergies between different fields of knowledge. To master the fundamentals of X-ray physics means the opportunity of working at an infiniteness of fields, studying systems where the organizational understanding of matter at the atomic scale is necessary. Since the discovery of X radiation, its usage as investigative tool has always been under fast expansion afforded by instrumental advances and computational resources. Developments in medical and technological fields have, as one of the master girders, the feasibility of structural analysis offered by X-rays. One of the major difficulties faced by beginners in using this fantastic tool lies in the analysis of experimental data. There are only few cases where it is possible to extract structural information directly from experiments. In most cases, structure models and simulation of radiation-matter interaction processes are essential. The advent of intense radiation sources and rapid development of nanotechnology constantly creates challenges that seek solutions beyond those offered by standard X-ray techniques. Preparing new researchers for this scenario of rapid and drastic changes requires more than just teaching theories of physical phenomena. It also requires teaching of how to implement them in a simple and efficient manner. In this book, fundamental concepts in applied X-ray physics are demonstrated through available computer simulation tools. Using MatLab, more than eighty routines are developed for solving the proposed exercises, most of which can be directly used in experimental data analysis. Therefore, besides X-ray physics, this book offers a practical programming course in modern high-level language, with plenty of graphic and mathematical tools.

Molecular Spintronics - From Organic Semiconductors to Self-Assembled Monolayers (Paperback, Softcover reprint of the original... Molecular Spintronics - From Organic Semiconductors to Self-Assembled Monolayers (Paperback, Softcover reprint of the original 1st ed. 2016)
Marta Galbiati
R3,533 Discovery Miles 35 330 Ships in 10 - 15 working days

This thesis targets molecular or organic spintronics and more particularly the spin polarization tailoring opportunities that arise from the ferromagnetic metal/molecule hybridization at interfaces: the new concept of spinterface. Molecular or organic spintronics is an emerging research field at the frontier between organic chemistry and spintronics. The manuscript is divided into three parts, the first of which introduces the basic concepts of spintronics and advantages that molecules can bring to this field. The state of the art on organic and molecular spintronics is also presented, with a special emphasis on the physics and experimental evidence for spinterfaces. The book's second and third parts are dedicated to the two main experimental topics investigated in the thesis: Self-Assembled Monolayers (SAMs) and Organic Semiconductors (OSCs). The study of SAMs-based magnetic tunnel nanojunctions reveals the potential to modulate the properties of such devices "at will," since each part of the molecule can be tuned independently like a "LEGO" building block. The study of Alq3-based spin valves reveals magnetoresistance effects at room temperature and is aimed at understanding the respective roles played by the two interfaces. Through the development of these systems, we demonstrate their potential for spintronics and provide a solid foundation for spin polarization engineering at the molecular level.

Piezotronics and Piezo-Phototronics (Paperback, Softcover reprint of the original 1st ed. 2012): Zhong Lin Wang Piezotronics and Piezo-Phototronics (Paperback, Softcover reprint of the original 1st ed. 2012)
Zhong Lin Wang
R2,976 Discovery Miles 29 760 Ships in 10 - 15 working days

The fundamental principle of piezotronics and piezo-phototronics were introduced by Wang in 2007 and 2010, respectively. Due to the polarization of ions in a crystal that has non-central symmetry in materials, such as the wurtzite structured ZnO, GaN and InN, a piezoelectric potential (piezopotential) is created in the crystal by applying a stress. Owing to the simultaneous possession of piezoelectricity and semiconductor properties, the piezopotential created in the crystal has a strong effect on the carrier transport at the interface/junction. Piezotronics is for devices fabricated using the piezopotential as a "gate" voltage to control charge carrier transport at a contact or junction. The piezo-phototronic effect uses the piezopotential to control the carrier generation, transport, separation and/or recombination for improving the performance of optoelectronic devices, such as photon detector, solar cell and LED. The functionality offered by piezotroics and piezo-phototronics are complimentary to CMOS technology. There is an effective integration of piezotronic and piezo-phototronic devices with silicon based CMOS technology. Unique applications can be found in areas such as human-computer interfacing, sensing and actuating in nanorobotics, smart and personalized electronic signatures, smart MEMS/NEMS, nanorobotics and energy sciences. This book introduces the fundamentals of piezotronics and piezo-phototronics and advanced applications. It gives guidance to researchers, engineers and graduate students.

Two-Dimensional Transition-Metal Dichalcogenides (Hardcover, 1st ed. 2016): Alexander V. Kolobov, Junji Tominaga Two-Dimensional Transition-Metal Dichalcogenides (Hardcover, 1st ed. 2016)
Alexander V. Kolobov, Junji Tominaga
R10,481 Discovery Miles 104 810 Ships in 10 - 15 working days

This book summarizes the current status of theoretical and experimental progress in 2 dimensional graphene-like monolayers and few-layers of transition metal dichalcogenides (TMDCs). Semiconducting monolayer TMDCs, due to the presence of a direct gap, significantly extend the potential of low-dimensional nanomaterials for applications in nanoelectronics and nano-optoelectronics as well as flexible nano-electronics with unprecedented possibilities to control the gap by external stimuli. Strong quantum confinement results in extremely high exciton binding energies which forms an interesting platform for both fundamental studies and device applications. Breaking of spatial inversion symmetry in monolayers results in strong spin-valley coupling potentially leading to their use in valleytronics. Starting with the basic chemistry of transition metals, the reader is introduced to the rich field of transition metal dichalcogenides. After a chapter on three dimensional crystals and a description of top-down and bottom-up fabrication methods of few-layer and single layer structures, the fascinating world of two-dimensional TMDCs structures is presented with their unique atomic, electronic, and magnetic properties. The book covers in detail particular features associated with decreased dimensionality such as stability and phase-transitions in monolayers, the appearance of a direct gap, large binding energy of 2D excitons and trions and their dynamics, Raman scattering associated with decreased dimensionality, extraordinarily strong light-matter interaction, layer-dependent photoluminescence properties, new physics associated with the destruction of the spatial inversion symmetry of the bulk phase, spin-orbit and spin-valley couplings. The book concludes with chapters on engineered heterostructures and device applications such as a monolayer MoS2 transistor. Considering the explosive interest in physics and applications of two-dimensional materials, this book is a valuable source of information for material scientists and engineers working in the field as well as for the graduate students majoring in materials science.

Electromagnetic Interactions (Hardcover, 1st ed. 2016): Slobodan Danko Bosanac Electromagnetic Interactions (Hardcover, 1st ed. 2016)
Slobodan Danko Bosanac
R4,229 Discovery Miles 42 290 Ships in 10 - 15 working days

This book is devoted to theoretical methods used in the extreme circumstances of very strong electromagnetic fields. The development of high power lasers, ultrafast processes, manipulation of electromagnetic fields and the use of very fast charged particles interacting with other charges requires an adequate theoretical description. Because of the very strong electromagnetic field, traditional theoretical approaches, which have primarily a perturbative character, have to be replaced by descriptions going beyond them. In the book an extension of the semi-classical radiation theory and classical dynamics for particles is performed to analyze single charged atoms and dipoles submitted to electromagnetic pulses. Special attention is given to the important problem of field reaction and controlling dynamics of charges by an electromagnetic field.

Theory of Gas Discharge Plasma (Paperback, Softcover reprint of the original 1st ed. 2015): Boris M. Smirnov Theory of Gas Discharge Plasma (Paperback, Softcover reprint of the original 1st ed. 2015)
Boris M. Smirnov
R4,252 Discovery Miles 42 520 Ships in 10 - 15 working days

This book presents the theory of gas discharge plasmas in a didactical way. It explains the processes in gas discharge plasmas. A gas discharge plasma is an ionized gas which is supported by an external electric field. Therefore its parameters are determined by processes in it. The properties of a gas discharge plasma depend on its gas component, types of external fields, their geometry and regimes of gas discharge. Fundamentals of a gas discharge plasma include elementary, radiative and transport processes which are included in its kinetics influence. They are represented in this book together with the analysis of simple gas discharges. These general principles are applied to stationary gas discharge plasmas of helium and argon. The analysis of such plasmas under certain conditions is theoretically determined by numerical plasma parameters for given regimes and conditions.

Basic Notions of Condensed Matter Physics (Paperback, 2): Philip W. Anderson Basic Notions of Condensed Matter Physics (Paperback, 2)
Philip W. Anderson
R2,166 Discovery Miles 21 660 Ships in 9 - 15 working days

"Basic Notions of Condensed Matter Physics" is a clear introduction to some of the most significant concepts in the physics of condensed matter. The general principles of many-body physics and perturbation theory are emphasised, providing supportive mathematical structure. This is an expansion and restatement of the second half of Nobel Laureate Philip Anderson's classic "Concepts in Solids."

Self-healing Materials (Hardcover, 1st ed. 2016): Martin D. Hager, Sybrand van der Zwaag, Ulrich S. Schubert Self-healing Materials (Hardcover, 1st ed. 2016)
Martin D. Hager, Sybrand van der Zwaag, Ulrich S. Schubert
R7,267 Discovery Miles 72 670 Ships in 10 - 15 working days

The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist. Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned. Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students

Nanoscale Imaging and Characterisation of Amyloid- (Hardcover, 1st ed. 2016): Claire Louisa Tinker-Mill Nanoscale Imaging and Characterisation of Amyloid- (Hardcover, 1st ed. 2016)
Claire Louisa Tinker-Mill
R3,678 Discovery Miles 36 780 Ships in 10 - 15 working days

This thesis presents a method for reliably and robustly producing samples of amyloid- (A ) by capturing them at various stages of aggregation, as well as the results of subsequent imaging with various atomic force microscopy (AFM) methods, all of which add value to the data gathered by collecting information on the peptide's nanomechanical, elastic, thermal or spectroscopical properties. Amyloid- (A ) undergoes a hierarchy of aggregation following a structural transition, making it an ideal subject of study using scanning probe microscopy (SPM), dynamic light scattering (DLS) and other physical techniques. By imaging samples of A with Ultrasonic Force Microscopy, a detailed substructure to the morphology is revealed, which correlates well with the most advanced cryo-EM work. Early stage work in the area of thermal and spectroscopical AFM is also presented, and indicates the promise these techniques may hold for imaging sensitive and complex biological materials. This thesis demonstrates that physical techniques can be highly complementary when studying the aggregation of amyloid peptides, and allow the detection of subtle differences in their aggregation processes.

Quantum Mechanics (Paperback, 6th edition): Alastair I. M. Rae, Jim Napolitano Quantum Mechanics (Paperback, 6th edition)
Alastair I. M. Rae, Jim Napolitano
R1,780 Discovery Miles 17 800 Ships in 9 - 15 working days

A Thorough Update of One of the Most Highly Regarded Textbooks on Quantum Mechanics Continuing to offer an exceptionally clear, up-to-date treatment of the subject, Quantum Mechanics, Sixth Edition explains the concepts of quantum mechanics for undergraduate students in physics and related disciplines and provides the foundation necessary for other specialized courses. This sixth edition builds on its highly praised predecessors to make the text even more accessible to a wider audience. It is now divided into five parts that separately cover broad topics suitable for any general course on quantum mechanics. New to the Sixth Edition Three chapters that review prerequisite physics and mathematics, laying out the notation, formalism, and physical basis necessary for the rest of the book Short descriptions of numerous applications relevant to the physics discussed, giving students a brief look at what quantum mechanics has made possible industrially and scientifically Additional end-of-chapter problems with different ranges of difficulty This exemplary text shows students how cutting-edge theoretical topics are applied to a variety of areas, from elementary atomic physics and mathematics to angular momentum and time dependence to relativity and quantum computing. Many examples and exercises illustrate the principles and test students' understanding.

Kinetics and Spectroscopy of Low Temperature Plasmas (Hardcover, 1st ed. 2016): Jorge Loureiro, Jayr Amorim Kinetics and Spectroscopy of Low Temperature Plasmas (Hardcover, 1st ed. 2016)
Jorge Loureiro, Jayr Amorim
R4,350 Discovery Miles 43 500 Ships in 10 - 15 working days

This is a comprehensive textbook designed for graduate and advanced undergraduate students. Both authors rely on more than 20 years of teaching experience in renowned Physics Engineering courses to write this book addressing the students' needs. Kinetics and Spectroscopy of Low Temperature Plasmas derives in a full self-consistent way the electron kinetic theory used to describe low temperature plasmas created in the laboratory with an electrical discharge, and presents the main optical spectroscopic diagnostics used to characterize such plasmas. The chapters with the theoretical contents make use of a deductive approach in which the electron kinetic theory applied to plasmas with basis on the electron Boltzmann equation is derived from the basic concepts of Statistical and Plasma Physics. On the other hand, the main optical spectroscopy diagnostics used to characterize experimentally such plasmas are presented and justified from the point of view of the Atomic and Molecular Physics. Low temperature plasmas (LTP) are partially ionized gases with a broad use in many technological applications such as microelectronics, light sources, lasers, biology and medicine. LTPs lead to the production of atomic and molecular excited states, chemically reactive radicals, and activated surface sites, which are in the origin, among others, of the deposition of thin films, advanced nanotechnology products, solar cells, highly efficient combustion motors, and treatment of cancer cells.

Dielectric Properties of Ionic Liquids (Hardcover, 1st ed. 2016): Marian Paluch Dielectric Properties of Ionic Liquids (Hardcover, 1st ed. 2016)
Marian Paluch
R2,995 Discovery Miles 29 950 Ships in 10 - 15 working days

This book discusses the mechanisms of electric conductivity in various ionic liquid systems (protic, aprotic as well as polymerized ionic liquids). It hence covers the electric properties of ionic liquids and their macromolecular counterpanes, some of the most promising materials for the development of safe electrolytes in modern electrochemical energy devices such as batteries, super-capacitors, fuel cells and dye-sensitized solar cells. Chapter contributions by the experts in the field discuss important findings obtained using broadband dielectric spectroscopy (BDS) and other complementary techniques. The book is an excellent introduction for readers who are new to the field of dielectric properties of ionic conductors, and a helpful guide for every scientist who wants to investigate the interplay between molecular structure and dynamics in ionic conductors by means of dielectric spectroscopy.

Angle-Resolved Photoemission Spectroscopy on High-Temperature Superconductors - Studies of Bi2212 and Single-Layer FeSe Film... Angle-Resolved Photoemission Spectroscopy on High-Temperature Superconductors - Studies of Bi2212 and Single-Layer FeSe Film Grown on SrTiO3 Substrate (Hardcover, 1st ed. 2016)
Junfeng He
R3,590 Discovery Miles 35 900 Ships in 10 - 15 working days

This book mainly focuses on the study of the high-temperature superconductor Bi2Sr2CaCu2O8+ (Bi2212) and single-layer FeSe film grown on SrTiO3 (STO) substrate by means of angle-resolved photoemission spectroscopy (ARPES). It provides the first electronic evidence for the origin of the anomalous high-temperature superconductivity in single-layer FeSe grown on SrTiO3 substrate. Two coexisted sharp-mode couplings have been identified in superconducting Bi2212. The first ARPES study on single-layer FeSe/STO films has provided key insights into the electronic origin of superconductivity in this system. A phase diagram and electronic indication of high Tc and insulator to superconductor crossover have been established in the single-layer FeSe/STO films. Readers will find essential information on the techniques used and interesting physical phenomena observed by ARPES.

Organogels - Thermodynamics, Structure, Solvent Role, and Properties (Paperback, 1st ed. 2016): Jean--Michel Guenet Organogels - Thermodynamics, Structure, Solvent Role, and Properties (Paperback, 1st ed. 2016)
Jean--Michel Guenet
R1,922 Discovery Miles 19 220 Ships in 10 - 15 working days

This book provides a physics-oriented introduction to organogels with a comparison to polymer thermoreversible gels whenever relevant. The past decade has seen the development of a wide variety of newly-synthesized molecules that can spontaneously self-assemble or crystallize from their organic or aqueous solutions to produce fibrillar networks, namely organogels, with potential applications in organic electronics, light harvesting, bio-imaging, non-linear optics, and the like. This compact volume presents a detailed outlook of these novel molecular systems with special emphasis upon their thermodynamics, morphology, molecular structure, and rheology. The definition of these complex systems is also tackled, as well as the role of the solvent. The text features numerous temperature-phase diagrams for a variety of organogels as well as illustrations of their structures at the microscopic, mesoscopic and macroscopic level. A review of some potential applications is provided including hybrid functional materials with polymers and with carbon nanotubes. Throughout, discussions of theoretical developments and experimental advances are written at a level suitable for beginning graduate students through practicing researchers.

Plasma Physics for Controlled Fusion (Hardcover, 2nd ed. 2016): Kenro Miyamoto Plasma Physics for Controlled Fusion (Hardcover, 2nd ed. 2016)
Kenro Miyamoto
R6,257 Discovery Miles 62 570 Ships in 10 - 15 working days

This new edition presents the essential theoretical and analytical methods needed to understand the recent fusion research of tokamak and alternate approaches. The author describes magnetohydrodynamic and kinetic theories of cold and hot plasmas in detail. The book covers new important topics for fusion studies such as plasma transport by drift turbulence, which depend on the magnetic configuration and zonal flows. These are universal phenomena of microturbulence. They can modify the onset criterion for turbulent transport, instabilities driven by energetic particles as well as alpha particle generation and typical plasma models for computer simulation. The fusion research of tokamaks with various new versions of H modes are explained. The design concept of ITER, the international tokamak experimental reactor, is described for inductively driven operations as well as steady-state operations using non-inductive drives. Alternative approaches of reversed-field pinch and its relaxation process, stellator including quasi-symmetric system, open-end system of tandem mirror and inertial confinement are also explained. Newly added and updated topics in this second edition include zonal flows, various versions of H modes, and steady-state operations of tokamak, the design concept of ITER, the relaxation process of RFP, quasi-symmetric stellator, and tandem mirror. The book addresses graduate students and researchers in the field of controlled fusion.

A Concise Course on the Theory of Classical Liquids - Basics and Selected Topics (Paperback, 1st ed. 2016): Andres Santos A Concise Course on the Theory of Classical Liquids - Basics and Selected Topics (Paperback, 1st ed. 2016)
Andres Santos
R2,570 Discovery Miles 25 700 Ships in 10 - 15 working days

This short primer offers non-specialist readers a concise, yet comprehensive introduction to the field of classical fluids - providing both fundamental information and a number of selected topics to bridge the gap between the basics and ongoing research. In particular, hard-sphere systems represent a favorite playground in statistical mechanics, both in and out of equilibrium, as they represent the simplest models of many-body systems of interacting particles, and at higher temperature and densities they have proven to be very useful as reference systems for real fluids. Moreover, their usefulness in the realm of soft condensed matter has become increasingly recognized - for instance, the effective interaction among (sterically stabilized) colloidal particles can be tuned to almost perfectly match the hard-sphere model. These lecture notes present a brief, self-contained overview of equilibrium statistical mechanics of classical fluids, with special applications to both the structural and thermodynamic properties of systems made of particles interacting via the hard-sphere potential or closely related model potentials. In particular it addresses the exact statistical-mechanical properties of one-dimensional systems, the issue of thermodynamic (in)consistency among different routes in the context of several approximate theories, and the construction of analytical or semi-analytical approximations for the structural properties. Written pedagogically at the graduate level, with many figures, tables, photographs, and guided end-of-chapter exercises, this introductory text benefits students and newcomers to the field alike.

Free Delivery
Pinterest Twitter Facebook Google+
You may like...
Moessbauer Effect in Lattice Dynamics…
Yi-Long Chen, De-Ping Yang Hardcover R6,778 R5,360 Discovery Miles 53 600
Gibbs' Entropic Paradox and Problems of…
Eugene Barsky Paperback R4,727 R4,265 Discovery Miles 42 650
Unifying Physics of Accelerators, Lasers…
Andrei Seryi, Elena Seraia Paperback R1,856 Discovery Miles 18 560
How to Make an Apple Pie from Scratch…
Harry Cliff Paperback R280 R219 Discovery Miles 2 190
Spectroscopy of Low Temperature Plasma
V.N. Ochkin Hardcover R6,096 R4,833 Discovery Miles 48 330
Fusion Plasma Physics 2e
WM Stacey Hardcover R3,508 R2,816 Discovery Miles 28 160
Diffusion-controlled Solid State…
Andriy M. Gusak, T.V. Zaporozhets, … Hardcover R5,146 R4,090 Discovery Miles 40 900
Plasma Physics - An Introduction
Richard Fitzpatrick Paperback R1,571 Discovery Miles 15 710
Cosmic Ray Physics - An Introduction to…
Veronica Bindi, Mercedes Paniccia, … Paperback R1,637 Discovery Miles 16 370
Properties of Interacting…
G Gumbs Hardcover R3,712 R2,968 Discovery Miles 29 680

 

Partners