|
Books > Science & Mathematics > Physics > States of matter
This book, edited by M. A. Ramos and contributed by several reputed
physicists in the field, presents a timely review on
low-temperature thermal and vibrational properties of glasses, and
of disordered solids in general. In 1971, the seminal work of
Zeller and Pohl was published, which triggered this relevant
research field in condensed matter physics. Hence, this book also
commemorates about 50 years of that highlight with a comprehensive,
updated review.In brief, glasses (firstly genuine amorphous solids
but later on followed by different disordered crystals) were found
to universally exhibit low-temperature properties (specific heat,
thermal conductivity, acoustic and dielectric attenuation, etc.)
unexpectedly very similar among them - and very different from
those of their crystalline counterparts.These universal 'anomalies'
of glasses and other disordered solids remain very controversial
topics in condensed matter physics. They have been addressed
exhaustively in this book, through many updated experimental data,
a survey of most relevant models and theories, as well as by
computational simulations.
The first part of this book overviews the physics of lasers and
describes some of the more common types of lasers and their
applications. Applications of lasers include CD/DVD players, laser
printers and fiber optic communication devices. Part II of this
book describes the phenomenon of Bose-Einstein condensation. The
experimental techniques used to create a Bose-Einstein condensate
provide an interesting and unconventional application of lasers;
that is, the cooling and confinement of a dilute gas at very low
temperature.
'Witty, approachable and captivating' - Robin Ince 'A fascinating
exploration of how we learned what matter really is' - Sean Carroll
'A delightfully fresh and accessible approach to one of the great
quests of science' - Graham Farmelo 'Lays out not just what we
know, but how we found out (and what is left to be discovered' -
Katie Mack 'If you wish to make an apple pie from scratch, you must
first invent the universe' - Carl Sagan Inspired by Sagan's famous
line, How To Make An Apple Pie From Scratch sets out on a journey
to unearth everything we know about our universe: how it started,
how we found out, and what we still have left to discover. Will we
ever be able to understand the very first moments of the world we
inhabit? What is matter really made of? How did anything survive
the fearsome heat of the Big Bang? In pursuit of answers, we meet
the scientists, astronomers and philosophers who brought us to our
present understanding of the world - offering readers a front-row
seat to the most dramatic journey human beings have ever embarked
on. Harry Cliff's How To Make An Apple Pie From Scratch is an
essential, fresh and funny guide to how we got to where we are now
- and what we have to come.
In this book, cancer theranostics applications of magnetic iron
oxide nanoparticles are overviewed in details. Moreover, their
synthesis, characterization, multifunctionality, disease targeting,
biodistribution, pharmacokinetics and toxicity have been briefly
highlighted. Finally, we have mentioned the current examples of
clinical trials of magnetic nanoparticles in cancer theranostics
along with their future scopes and challenges.
Advanced fiber materials have been developed for various superior
applications because of their higher mechanical flexibility,
high-temperature resistance, and outstanding chemical stability.
This book presents an overview of the current development of
advanced fiber materials, fabrication methods, and applications.
Applications covered include pollution control, environment,
energy, information storage technology, optical and photonic,
photocatalysis, textile, drug delivery, tumor therapy, corrosion
protection applications, and a state of art of advanced fiber
materials.
Nanomedicine is a developing field, which includes different
disciplines such as material science, chemistry, engineering and
medicine devoted to the design, synthesis and construction of
high-tech nanostructures. The ability of these structures to have
their chemical and physical properties tuned by structural
modification, has allowed their use in drug delivery systems, gene
therapy delivery, and various types of theranostic approaches.
Colloidal noble metal nanoparticles and other nanostructures have
many therapeutic and diagnostic applications. The concept of drug
targeting as a magic bullet has led to much research in chemical
modification to design and optimize the binding to targeted
receptors. It is important to understand the precise relationship
between the drug and the carrier and its ability to target specific
tissues, and pathogens to make an efficient drug delivery system.
This book covers advances based on different drug delivery systems:
polymeric and hyper branched nanomaterials, carbon-based
nanomaterials, nature-inspired nanomaterials, and pathogen-based
carriers.
Since the initial predictions for the existence of Weyl fermions in
condensed matter, many different experimental techniques have
confirmed the existence of Weyl semimetals. Among these techniques,
optical responses have shown a variety of effects associated with
the existence of Weyl fermions. In chiral crystals, we find a new
type of fermions protected by crystal symmetries — the chiral
multifold fermions — that can be understood as a higher-spin
generalization of Weyl fermions. This work provides a complete
description of all chiral multifold fermions, studying their
topological properties and the k·p models describing them. We
compute the optical conductivity of all chiral multifold fermions
and establish their optical selection rules. We find that the
activation frequencies are different for each type of multifold
fermion, thus constituting an experimental fingerprint for each
type of multifold fermion. Building on the theoretical results
obtained in the first part of our analysis, we study two chiral
multifold semimetals: RhSi and CoSi. We analyze the experimental
results with k·p and tight-binding models based on the crystal
symmetries of the material. We trace back the features observed in
the experimental optical conductivity to the existence of multifold
fermions near the Fermi level and estimate the chemical potential
and the scattering lifetime in both materials. Finally, we provide
an overview of second-order optical responses and study the
second-harmonic generation of RhSi. We find a sizeable
second-harmonic response in the low-energy regime associated with
optical transitions between topological bands. However, this regime
is extremely challenging to access with the current experimental
techniques. We conclude by providing an overview of the main
results, highlighting potential avenues to further research on
chiral multifold semimetals and the future of optical responses as
experimental probes to characterize topological phases.
Corrosion is a high-cost and potentially hazardous issue in
numerous industries. The potential use of diverse carbon
nanoallotropes in corrosion protection, prevention and control is a
subject of rising attention. This book covers the current
advancements of carbon nanoallotropes in metal corrosion
management, including the usage of nanostructure materials to
produce high-performance corrosion inhibitors and
corrosion-resistant coatings.
In the last years there have been great advances in the
applications of topology and differential geometry to problems in
condensed matter physics. Concepts drawn from topology and geometry
have become essential to the understanding of several phenomena in
the area. Physicists have been creative in producing models for
actual physical phenomena which realize mathematically exotic
concepts and new phases have been discovered in condensed matter in
which topology plays a leading role. An important classification
paradigm is the concept of topological order, where the state
characterizing a system does not break any symmetry, but it defines
a topological phase in the sense that certain fundamental
properties change only when the system passes through a quantum
phase transition. The main purpose of this book is to provide a
brief, self-contained introduction to some mathematical ideas and
methods from differential geometry and topology, and to show a few
applications in condensed matter. It conveys to physicists the
basis for many mathematical concepts, avoiding the detailed
formality of most textbooks.
|
|