|
Books > Science & Mathematics > Physics > States of matter
Foams are ubiquitous in our daily lives. Their presence is highly
desirable in certain foods, drinks and cosmetics, and they are
essential in oil recovery and mineral extraction. In some
industrial processes (such as the manufacture of glass, paper and
wine) foams are an unwelcome by-product. Why do they appear? What
controls the rate at which they disappear? Do they flow in the same
way as ordinary liquids? All of these questions and more are
addressed here, incorporating significant recent contributions to
the field of foams. This book is the first to provide a thorough
description of all aspects of the physico-chemical properties of
foams. It sets out what is known about their structure, their
stability, and their rheology. Engineers, researchers and students
will find descriptions of all the key concepts, illustrated by
numerous applications, as well as experiments and exercises for the
reader. A solutions manual for lecturers is available via the
publisher's web site.
This book, based primarily on late breaking work ... provides an
interesting snapshot at some of the main lines of current and new
research within the field, such as investigation of the novel
properties of ionic liquids and their uses in separations (e.g.,
gases, organics, and metal ions), biochemistry, medicine, and
nanochemistry. The chapters also reflect the growing theoretical
and computational work within the field leading to new predictive
capability.
- From the Preface
An informal and highly accessible writing style, a simple treatment
of mathematics, and clear guide to applications have made this book
a classic text in electrical and electronic engineering. Students
will find it both readable and comprehensive. The fundamental ideas
relevant to the understanding of the electrical properties of
materials are emphasized; in addition, topics are selected in order
to explain the operation of devices having applications (or
possible future applications) in engineering. The mathematics, kept
deliberately to a minimum, is well within the grasp of a
second-year student. This is achieved by choosing the simplest
model that can display the essential properties of a phenomenom,
and then examining the difference between the ideal and the actual
behaviour. The whole text is designed as an undergraduate course.
However most individual sections are self contained and can be used
as background reading in graduate courses, and for interested
persons who want to explore advances in microelectronics, lasers,
nanotechnology, and several other topics that impinge on modern
life.
This book is dedicated to Professor Leonid V Keldysh. His brilliant
contributions to condensed matter physics include the Franz-Keldysh
effect, an electron-hole liquid, the nonequilibrium (Keldysh)
diagram technique, Bose-Einstein condensation (of excitons) and a
metal-dielectric'' transition, acoustically-induced superlattices,
multi-photon transitions and impact ionization in solids. In many
respects, his work influenced and formed the paradigm of modern
condensed matter physics. As a result, many famous researchers in
the field have enthusiastically provided unique contributions to
the book.
Nanoscience and nanotechnology have functioned as effective
"buzzwords " for at least a decade due to the unique properties
that materials possess on the nanometer scale. The interest in
nanoscience and nanotechnology is so great and so widespread that
these topics are even being introduced at the K-12 level in some
school districts. Nanoscience and nanotechnology have already
improved many applications and have the potential to continue to do
so, making it important for all types of scientists to stay
up-to-date on research related to nanomaterials. In the first
section of this book, a variety of synthetic methods used to make
or functionalize nanomaterials are presented with work related to
mesoporous materials, semiconductor nanowires, graphene, and carbon
nanotubes included. The second section of the book presents
accounts of using nanotechnology and nanoscience in a variety of
ways. Overall, this book presents a snapshot of research covering
synthetic studies of nanomaterials to applications of
nanomaterials.
Well-structured and adopting a pedagogical approach, this
self-contained monograph covers the fundamentals of scanning probe
microscopy, showing how to use the techniques for investigating
physical and chemical properties on the nanoscale and how they can
be used for a wide range of soft materials. It concludes with a
section on the latest techniques in nanomanipulation and
patterning. This first book to focus on the applications is a
must-have for both newcomers and established researchers using
scanning probe microscopy in soft matter research. From the
contents: * Atomic Force Microscopy and Other Advanced Imaging
Modes * Probing of Mechanical, Thermal Chemical and Electrical
Properties * Amorphous, Poorly Ordered and Organized Polymeric
Materials * Langmuir-Blodgett and Layer-by-Layer Structures *
Multi-Component Polymer Systems and Fibers * Colloids and
Microcapsules * Biomaterials and Biological Structures *
Nanolithography with Intrusive AFM Tipand Dip-Pen Nanolithography *
Microcantilever-Based Sensors
This book employs nonequilibrium quantum transport, based on the
use of mixed Hilbert space representations and real time quantum
superfield transport theory, to explain various topological phases
of systems with entangled chiral degrees of freedom. It presents an
entirely new perspective on topological systems,
entanglement-induced localization and delocalization, integer
quantum Hall effect (IQHE), fractional quantum Hall effect (FQHE),
and its respective spectral zones in the Hofstadter butterfly
spectrum. A simple and powerful, intuitive, and wide-ranging
perspective on chiral transport dynamics.
This book offers the foundation for research on nuclear medicine
and low temperature plasma applications in multiple industries and
daily life. This book is beneficial for those wishing to advance
their knowledge of the physics of plasma medicine, plasma
agriculture and industrial applications. It provides a
comprehensive overview of the basic Fundamental Science of Low
Temperature Plasma (FS-LTP) knowledge required for the practice of
medical physics in modern medicine. This book provides a guide of
nuclear medicine that is the exercise of using radionuclides in
medicine for diagnosis, staging of disease, therapy and monitoring
the response of a disease process. This book comprehensively covers
a broad range of topic including but not limited to field of Plasma
Oncology and Plasma Medicine with many applications including,
agriculture, plasma processing, catalysis, and aerospace
engineering.
This book, edited by M. A. Ramos and contributed by several reputed
physicists in the field, presents a timely review on
low-temperature thermal and vibrational properties of glasses, and
of disordered solids in general. In 1971, the seminal work of
Zeller and Pohl was published, which triggered this relevant
research field in condensed matter physics. Hence, this book also
commemorates about 50 years of that highlight with a comprehensive,
updated review.In brief, glasses (firstly genuine amorphous solids
but later on followed by different disordered crystals) were found
to universally exhibit low-temperature properties (specific heat,
thermal conductivity, acoustic and dielectric attenuation, etc.)
unexpectedly very similar among them - and very different from
those of their crystalline counterparts.These universal 'anomalies'
of glasses and other disordered solids remain very controversial
topics in condensed matter physics. They have been addressed
exhaustively in this book, through many updated experimental data,
a survey of most relevant models and theories, as well as by
computational simulations.
The first part of this book overviews the physics of lasers and
describes some of the more common types of lasers and their
applications. Applications of lasers include CD/DVD players, laser
printers and fiber optic communication devices. Part II of this
book describes the phenomenon of Bose-Einstein condensation. The
experimental techniques used to create a Bose-Einstein condensate
provide an interesting and unconventional application of lasers;
that is, the cooling and confinement of a dilute gas at very low
temperature.
In this book, cancer theranostics applications of magnetic iron
oxide nanoparticles are overviewed in details. Moreover, their
synthesis, characterization, multifunctionality, disease targeting,
biodistribution, pharmacokinetics and toxicity have been briefly
highlighted. Finally, we have mentioned the current examples of
clinical trials of magnetic nanoparticles in cancer theranostics
along with their future scopes and challenges.
Advanced fiber materials have been developed for various superior
applications because of their higher mechanical flexibility,
high-temperature resistance, and outstanding chemical stability.
This book presents an overview of the current development of
advanced fiber materials, fabrication methods, and applications.
Applications covered include pollution control, environment,
energy, information storage technology, optical and photonic,
photocatalysis, textile, drug delivery, tumor therapy, corrosion
protection applications, and a state of art of advanced fiber
materials.
Nanomedicine is a developing field, which includes different
disciplines such as material science, chemistry, engineering and
medicine devoted to the design, synthesis and construction of
high-tech nanostructures. The ability of these structures to have
their chemical and physical properties tuned by structural
modification, has allowed their use in drug delivery systems, gene
therapy delivery, and various types of theranostic approaches.
Colloidal noble metal nanoparticles and other nanostructures have
many therapeutic and diagnostic applications. The concept of drug
targeting as a magic bullet has led to much research in chemical
modification to design and optimize the binding to targeted
receptors. It is important to understand the precise relationship
between the drug and the carrier and its ability to target specific
tissues, and pathogens to make an efficient drug delivery system.
This book covers advances based on different drug delivery systems:
polymeric and hyper branched nanomaterials, carbon-based
nanomaterials, nature-inspired nanomaterials, and pathogen-based
carriers.
|
|