![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Testing of materials
This volume gathers the latest advances, innovations, and applications in the field of accelerated pavement testing (APT), presented at the 6th International Conference on Accelerated Pavement Testing, in Nantes, France, in April 2022. Discussing APT, which involves rapid testing of full-scale pavement constructions for structural deterioration, the book covers topics such as APT facilities, APT of asphalt concrete and sustainable/innovative materials, APT for airfield pavements, testing of maintenance and rehabilitation solutions, testing of smart and multi-functional pavements, data analysis and modeling, monitoring and non-destructive testing, and efficient means of calibrating/developing pavement design methods. Featuring peer-reviewed contributions by leading international researchers and engineers, the book is a timely and highly relevant resource for materials scientists and engineers interested in determining the performance of pavement structures during their service life (10+ years) in a few weeks or months.
This book presents fundamental theories, design and testing methodologies, and engineering applications concerning spacecraft thermal control systems, helping readers gain a comprehensive understanding of spacecraft thermal control systems and technologies. With abundant design methods, advanced technologies and typical applications to help them grasp the basic concepts and principles of engineering applications, it is mainly intended for engineering and technical staff engaged in spacecraft thermal control areas. The book discusses the thermal environments commonly used for space flight missions, rules and regulations for system design, thermal analysis and simulation, and thermal testing methods, as well as the design and validation of the thermal control systems for Chinese spacecraft, such as the Shenzhou spacecraft and Chang'e Lunar Lander and Rover. It also introduces them to communication and remote sensing satellites and presents advanced thermal control technologies developed in recent years, including heat transfer, heat insulation, heating, refrigeration and thermal sensor technologies. Addressing the design and validation of thermal control systems for various types of Chinese spacecraft, the book offers a valuable theoretical and practical reference guide for researchers and engineers alike.
The book covers in particular state-of-the-art scientific research about product quality control and related health and environmental safety topics, including human, animal and plant safety assurance issues. These conference proceedings provide contemporary information on the general theoretical, metrological and practical issues of the production and application of reference materials. Reference materials play an integral role in physical, chemical and related type of measurements, ensuring their uniformity, comparability and the validity of quantitative analysis as well as, as a result, the objectivity of decisions concerning the elimination of technical barriers in commercial and economic, scientific and technical and other spheres of cooperation. The book is intended for researchers and practitioners in the field of chemistry, metrologists, technical physics, as well as for specialists in analytical laboratories, or working for companies and organizations involved in the production, distribution and use of reference materials.
Written for the practicing electronics professional, Tolerance Analysis of Electronic Circuits Using MATLAB offers a comprehensive, step-by-step treatment of methods used to perform analyses essential to the design process of circuit cards and systems of cards, including:
This book discusses various aspects of percolation mechanics. It starts with the driving forces and driving modes and then examines in detail the steady state percolation of single-phase incompressible fluids, percolation law of natural gas and percolation of non-Newtonian fluids. Progressing from simple to complex concepts, it also analyzes Darcy's law, providing a basis for the study of reservoir engineering, oil recovery engineering and reservoir numerical simulation. It serves as a textbook for undergraduate students majoring in petroleum engineering, petroleum geology and groundwater engineering, and offers a valuable reference guide for graduate students, researchers and technical engineers engaged in oil and gas exploration and development.
This volume covers various aspects of cross-linked polyethylene (XLPE). The contents include manufacture, morphology, structure, properties, applications, early stage development, cross-linking techniques, recycling process, physical and chemical properties as well as the scope and future aspects of XLPE. It focuses on the life cycle analysis of XLPE and their industrial applications and commercial importance. This book will be of use to academic and industry researchers, as well as graduate students working in the fields of polymer science and engineering, materials science, and chemical engineering.
This special ESIS publication concentrates on dynamic test standard methods and the analysis of the data they produce. This is a topic of increasing interest and has applications in nuclear power, many areas of transport and military technologies. The papers represent a spectrum views and cover applications to a range of materials. Novel solutions for particular problems are described in detail, for example cases are studied for which only very small material samples are available.
This is the first book summarizing the theoretical basics of thermal nondestructive testing (TNDT) by combining elements of heat conduction, infrared thermography, and industrial nondestructive testing. The text contains the physical models of TNDT, heat transfer in defective and sound structures, and thermal properties of materials. Also included are the optimization of TNDT procedures, defect characterization, data processing in TNDT, active and passive TNDT systems, as well as elements of statistical data treatment and decision making. This text contains in-depth descriptions of applications in infrared/thermal testing within aerospace, power production, building, as well as the conservation of artistic monuments The book is intended for the industrial specialists who are involved in technical diagnostics and nondestructive testing. It may also be useful for academic researchers, undergraduate, graduate and PhD university students.
This timely resource offers complete, single-source coverage of ceramic mechanical property measurement techniques for use in component design as well as lifetime and reliability predictions-describing the theoretical aspects of chemistry and microstructure that affect mechanical properties. Presenting procedures for both room- and elevated-temperature applications, Mechanical Testing Methodology for Ceramic Design and Reliability discusses tests for strength, creep and creep rupture, fracture toughness, and fatigue the effects of environment on fracture and creep processes mechanisms of failure statistical experimental design and analysis standardization and the limitations of specific testing methods and more With over 1200 bibliographic citations, equations, drawings, and tables, Mechanical Testing Methodology for Ceramic Design and Reliability is a practical reference for ceramic, materials, mechanical, design, manufacturing, quality, and reliability engineers; ceramists; ceramic and materials scientists; and upper-level undergraduate and graduate students in these disciplines.
The book presents the work of the RILEM Technical Committee 249-ISC. Addressing the effective application of new recommendations for non-destructive in situ strength assessment of concrete, it provides information about the different steps of the investigation and processing of test results, until the delivery of strength estimates, and includes tables giving the minimum required number of cores in a variety of situations as well as several examples of how the recommendations can be used in practice. The book explores a topic which is of major importance, i.e. the assessment of concrete compressive strength in existing structures. This property (both mean and standard deviation) is a key input in many cases, such as the reinforcement of structures, the safety checking, the extension of service life. As the new RILEM recommendations imply a deep revision (and improvement) of field practice, the book is intended for managers of structures, structural engineers and specialists of NDT that have to answer these issues. More widely, it will benefit engineers and students who are interested in NDT and in the safety analysis of structures.
The theme for the 2021 conference was System-in-Package (SiP) technology. Papers include discussions on board and system level failure analysis; detecting counterfeit microelectronics; emerging failure analysis techniques and concepts; future challenges of failure analysis; scanning probe analysis; hardware attacks, security, and reverse engineering; microscopy and material characterization; nanoprobing and electrical characterization; and more. In the 21st century, the electronic market will be driven by consumers with demands of immediate entertainment, fast access to information, and communications anywhere in a personalized fashion and at affordable prices. The new challenge is not how many transistors can be built on a single chip, as in System-on-Chip (SoC), but rather how to integrate diverse circuits together predictably, harmoniously, and cost effectively. Instead of getting twice the transistors for the same cost as Moore's Law predicted in the past 50 years, the goal of SiP is to obtain the same number of transistors for half the cost within less than half the time to market.
This book addresses methods used in the synthesis of light alloys and composites for industrial applications. It begins with a broad introduction to virtually all aspects of the technology of light alloys and composite materials for aircraft and aerospace applications. The basic theory of fiber and particle reinforcements; light metallic material characteristics and composite systems; components forms, and manufacturing techniques and processes are discussed. The book then progresses to describe the production of alloys and composites by unconventional techniques, such as powder metallurgy, sandwich technique, severe plastic deformation, additive manufacturing, and thermal spray, making it appropriate for researchers in both academia and industry. It will be of special interest to aerospace engineers. Provides a broad introduction to the technology used in manufacturing light alloys and composite materials; Describes the current technologies employed in synthesizing light alloys made from advanced materials; Focuses on unconventional techniques used to produce light alloys and composites in aerospace applications.
This book presents the select proceedings of the International Conference on Functional Material, Manufacturing and Performances (ICFMMP) 2019. The book primarily covers recent research, theories, and practices relevant to surface engineering and processing of materials. It focuses on the lesser-known technologies and advanced manufacturing methods which may not be standardized yet but are highly beneficial to material and manufacturing industrial engineers. The book includes current advances in the field of coating, deposition, cladding, nanotechnology, surface finishing, precision machining, processing, and emerging advanced manufacturing technologies which enhance the performance of materials in terms of corrosion, wear and fatigue. The book can be a valuable reference for beginners, researchers, and professionals interested in materials processing and allied fields.
Geometric Dimensioning and Tolerancing: Workbook and Answerbook offers a host of effective examples that utilize the concepts discussed in the reference/text--covering all facets of geometric dimensioning and tolerancing, measurement, inspection, and gauging applicable in any on-the-job situation. The Workbook and Answerbook is a companion to Geometric Dimensioning and Tolerancing: Applications for use in Design, Manufacturing, and Inspection (ISBN: 0-8247-9309-9) and follows the reference text chapter by chapter.
This book presents machine learning as a set of pre-requisites, co-requisites, and post-requisites, focusing on mathematical concepts and engineering applications in advanced welding and cutting processes. It describes a number of advanced welding and cutting processes and then assesses the parametrical interdependencies of two entities, namely the data analysis and data visualization techniques, which form the core of machine learning. Subsequently, it discusses supervised learning, highlighting Python libraries such as NumPy, Pandas and Scikit Learn programming. It also includes case studies that employ machine learning for manufacturing processes in the engineering domain. The book not only provides beginners with an introduction to machine learning for applied sciences, enabling them to address global competitiveness and work on real-time technical challenges, it is also a valuable resource for scholars with domain knowledge.
This book comprises select proceedings of the International Conference on Futuristic Trends in Materials and Manufacturing (ICFTMM) 2019. It covers latest findings and challenges in manufacturing processes and characterization of different advanced materials. Latest fabrication techniques of polymer based materials, biomaterials, and energy materials along with their practical applications are discussed. The contents also focus on cost-effective and energy-efficient sustainable and green manufacturing technologies. The contents of this book will be useful for students, researchers as well as industry professionals interested in characterization and fabrication of materials.
This book provides easy-to-understand explanations to systematically and comprehensively describe the X-ray CT technologies, techniques, and skills used for industrial and scientific purposes. Included are many references along with photographs, figures, and equations prepared by the author. These features all facilitate the reader's gaining a deeper understanding of the topics being discussed. The book presents expertise not only on fundamentals but also about hardware, software, and analytical methods for the benefit of technical users. The book targets engineers, researchers, and students who are involved in research, development, design, and quality assurance in industry and academia.
This book presents the select proceedings of the International Conference on Functional Material, Manufacturing and Performances (ICFMMP) 2019. The book provides the state-of-the-art research, development, and commercial prospective of recent advances in materials science and engineering. The contents cover various synthesis and fabrication routes of functional and smart materials for applications in mechanical engineering, manufacturing, metrology, nanotechnology, physics, chemical and biological sciences, civil engineering, food science among others. It also provides the evolutionary behavior of materials science for industrial applications. This book will be a useful resource for researchers as well as professionals interested in the highly interdisciplinary field of materials science.
This textbook offers a strong introduction to the fundamental concepts of materials science. It conveys the quintessence of this interdisciplinary field, distinguishing it from merely solid-state physics and solid-state chemistry, using metals as model systems to elucidate the relation between microstructure and materials properties. Mittemeijer's Fundamentals of Materials Science provides a consistent treatment of the subject matter with a special focus on the microstructure-property relationship. Richly illustrated and thoroughly referenced, it is the ideal adoption for an entire undergraduate, and even graduate, course of study in materials science and engineering. It delivers a solid background against which more specialized texts can be studied, covering the necessary breadth of key topics such as crystallography, structure defects, phase equilibria and transformations, diffusion and kinetics, and mechanical properties. The success of the first edition has led to this updated and extended second edition, featuring detailed discussion of electron microscopy, supermicroscopy and diffraction methods, an extended treatment of diffusion in solids, and a separate chapter on phase transformation kinetics. "In a lucid and masterly manner, the ways in which the microstructure can affect a host of basic phenomena in metals are described.... By consistently staying with the postulated topic of the microstructure - property relationship, this book occupies a singular position within the broad spectrum of comparable materials science literature .... it will also be of permanent value as a reference book for background refreshing, not least because of its unique annotated intermezzi; an ambitious, remarkable work." G. Petzow in International Journal of Materials Research. "The biggest strength of the book is the discussion of the structure-property relationships, which the author has accomplished admirably.... In a nutshell, the book should not be looked at as a quick 'cook book' type text, but as a serious, critical treatise for some significant time to come." G.S. Upadhyaya in Science of Sintering. "The role of lattice defects in deformation processes is clearly illustrated using excellent diagrams . Included are many footnotes, 'Intermezzos', 'Epilogues' and asides within the text from the author's experience. This ..... soon becomes valued for the interesting insights into the subject and shows the human side of its history. Overall this book provides a refreshing treatment of this important subject and should prove a useful addition to the existing text books available to undergraduate and graduate students and researchers in the field of materials science." M. Davies in Materials World.
This work elucidates the power of modern nuclear magnetic resonance (NMR) techniques to solve a wide range of practical problems that arise in both academic and industrial settings. This edition provides current information regarding the implementation and interpretation of NMR experiments, and contains material on: three- and four-dimensional NMR; the NMR analysis of peptides, proteins, carbohydrates and oligonucleotides; and more.
This book delivers a comprehensive overview of units of measurement. Beginning with a historical look at metrology in Ancient India, the book explains fundamental concepts in metrology such as basic, derived and dimensionless quantities, and introduces the concept of quantity calculus. It discusses and critically examines various three and four-dimensional systems of units used both presently and in the past, while explaining why only four base units are needed for a system of measurement. It discusses the Metre Convention as well as the creation of the International Bureau of Weights and Measures, and gives a detailed look at the evolution of the current SI base units of time, length, mass, electric current, temperature, intensity of illumination and substance. This updated second edition is extended with timely new chapters discussing past efforts to redefine the SI base units as well as the most recent 2019 redefinitions based entirely on the speed of light and other fundamental physical constants. Additionally, it provides biographical presentations of many of the historical figures behind commonly used units of measurements, such as Newton, Joule and Ohm, With its accessible and comprehensive treatment of the field, together with its unique presentation of the underlying history, this book is well suited to any student and researcher interested in the practical and historical aspects of the field of metrology.
The informal style of Laser Material Processing (4th Edition) will guide you smoothly from the basics of laser physics to the detailed treatment of all the major materials processing techniques for which lasers are now essential. Helps you to understand how the laser works and to decide which laser is best for your purposes. New chapters on laser physics, drilling, micro- and nanomanufacturing and biomedical laser processing reflect the changes in the field since the last edition, updating and completing the range of practical knowledge about the processes possible with lasers already familiar to established users of this well-known text. Provides a firm grounding in the safety aspects of laser use. Now with end-of-chapter exercises to help students assimilate information as they learn. The authors' lively presentation is supported by a number of original cartoons by Patrick Wright and Noel Ford which will bring a smile to your face and ease the learning process."
This book demonstrates the potential of novel in-situ experiments, performed on microscopic and macroscopic length scales, for investigating localized deformation processes in metallic materials, particularly their kinetics and the associated evolution of local strain fields. It features a broad methodological portfolio, spanning optical and electron microscopy, digital image correlation, infrared theromgraphy and acoustic emission testing, and particularly focuses on identifying the localized microscopic deformation processes in high-strength/high-ductility CrMnNi TRIP/TWIP (TRansformation Induced Plasticity/TWinning Induced Plasticity) steels. Presenting state-of-the art methodology applied to topical and pertinent problems in materials engineering, this book is a valuable resource for researchers and graduate students working in the field of plasticity and deformation of structural materials.
This book is a liber amicorum to Professor Sergei Konstantinovich Godunov and gathers contributions by renowned scientists in honor of his 90th birthday. The contributions address those fields that Professor Godunov is most famous for: differential and difference equations, partial differential equations, equations of mathematical physics, mathematical modeling, difference schemes, advanced computational methods for hyperbolic equations, computational methods for linear algebra, and mathematical problems in continuum mechanics.
This book focuses on structural characterisation techniques for porous materials. Covering a range of techniques, including gas sorption, mercury porosimetry, thermoporometry, NMR and imaging methods, this practical guide presents the basic theory behind each characterisation technique, and discusses the practicalities of the experimental and data analysis approaches needed for complex industrial samples. The book shows readers how to approach characterising a particular sort of material for the first time and then how to develop a strategy for more in-depth analysis. It also demonstrates how to determine the best techniques for solving particular problems, and describes methods of obtaining the required information, as well as the limitations of various methods. It particularly highlights a scientific approach involving parameter validation and simple acquisition. Featuring examples taken from case studies of real-world industrial materials, this book is intended for industrial practitioners and researchers. It provides a manual of potential techniques and answers questions concerning porous materials that arise in areas such as the catalyst industry, the oil and gas sector, batteries, fuel cells, tissue engineering scaffolds and drug delivery devices. |
![]() ![]() You may like...
Media ethics in South African context…
Lucas M. Oosthuizen
Paperback
![]()
Law of Commerce in South Africa
Dumile Baqwa, Elizabeth de Stadler, …
Paperback
R838
Discovery Miles 8 380
|