![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Testing of materials
This proceedings book presents dual approaches to examining new theoretical models and their applicability in the search for new scintillation materials and, ultimately, the development of industrial technologies. The ISMART conferences bring together the radiation detector community, from fundamental research scientists to applied physics experts, engineers, and experts on the implementation of advanced solutions. This scientific forum builds a bridge between the different parts of the community and is the basis for multidisciplinary, cooperative research and development efforts. The main goals of the conference series are to review the latest results in scintillator development, from theory to applications, and to arrive at a deeper understanding of fundamental processes, as well as to discover components for the production of new generations of scintillation materials. The book highlights recent findings and hypotheses, key advances, as well as exotic detector designs and solutions, and includes papers on the microtheory of scintillation and the initial phase of luminescence development, applications of the various materials, as well as the development and characterization of ionizing radiation detection equipment. It also touches on the increased demand for cryogenic scintillators, the renaissance of garnet materials for scintillator applications, nano-structuring in scintillator development, trends in and applications for security, and exploration of hydrocarbons and ecological monitoring.
^ < p=""> This highly informative and carefully presented volume highlights the impact behavior of fibre reinforced polymer composites. It begins with a preliminary focus on FRP materials, fabrication processes, micro- and macro- mechanics to calculate FRP laminates properties, damage nodes associated with FRP composites under different loadings. It provides a simple and unified approach to cover aspects of FRP composites behavior with low velocity impact loading. This book offers a valuable guide for those who wish to develop deeper insights into weaving architectures, stacking sequences, fabrication processes, general damage modes associated with FRP composites. It is a useful volume for students, academia and industry alike. ^
This book covers various technological aspects of sustainable energy ecosystems and processes that improve energy efficiency, and reduce and sequestrate carbon dioxide (CO2) and other greenhouse emissions. Papers emphasize the need for sustainable technologies in extractive metallurgy, materials processing and manufacturing industries with reduced energy consumption and CO2 emission. Industrial energy efficient technologies include innovative ore beneficiation, smelting technologies, recycling, and waste heat recovery. The book also contains contributions from all areas of non-nuclear and non-traditional energy sources, including renewable energy sources such as solar, wind, and biomass. Papers from the following symposia are presented in the book: Energy Technologies and Carbon Dioxide Management Recycling and Sustainability Update Magnetic Materials for Energy Applications V Sustainable Energy and Layered Double Hydroxides
This updated and revised edition of a classic work provides a summary of methods for numerical computation of high resolution conventional and scanning transmission electron microscope images. At the limits of resolution, image artifacts due to the instrument and the specimen interaction can complicate image interpretation. Image calculations can help the user to interpret and understand high resolution information in recorded electron micrographs. The book contains expanded sections on aberration correction, including a detailed discussion of higher order (multipole) aberrations and their effect on high resolution imaging, new imaging modes such as ABF (annular bright field), and the latest developments in parallel processing using GPUs (graphic processing units), as well as updated references. Beginning and experienced users at the advanced undergraduate or graduate level will find the book to be a unique and essential guide to the theory and methods of computation in electron microscopy.
This edited volume brings together the expertise of numerous specialists on the topic of particles - their physical, chemical, pharmacological and toxicological characteristics - when they are a component of pharmaceutical products and formulations. The book discusses in detail properties such as the composition, size, shape, surface properties and porosity of particles with respect to how they impact the formulations and products in which they are used and the effective delivery of pharmaceutical active ingredients. It considers all dosage forms of pharmaceuticals involving particles, from powders to tablets, creams to ointments, and solutions to dry-powder inhalers, also including the latest nanomedicine products. Further, it discusses examples of particle toxicity, as well as the important subject of pharmaceutical industry regulations, guidelines and legislation. The book is of interest to researchers and practitioners who work on testing and developing pharmaceutical dosage and delivery systems.
These Proceedings represent the metallurgical engineering and materials science research presented at the 61st Annual Conference of Metallurgists. The collection themed 'The Pathway to Net-Zero' presents findings on a wide range of topics including: Processing of Critical Metals Towards Sustainable Circularity: Mining to Materials Deep Decarbonization Pathways for Pyrometallurgical Processes: Opportunities & Challenges Energy and Environmental Materials Light Metals for the Transportation Industry Advances in Materials Manufacturing - Existing and Emerging Materials Electrochemical Degradation of Multi-component Materials
This book highlights the benefits of Non-Destructive Testing (NDT) methods and their applications on several cultural heritage sites including the Holy Selphuchre Monitoring System in Jerusalem. This book demonstrates Nondestructive sensing technologies and inspection modules as main tools for documentation, diagnosis, characterization, preservation planning, monitoring and quality of restoration, assessment and evaluation of material and preservation work.
This book reports on the development and application of a new uniaxial pressure apparatus that is currently generating considerable interest in the field of materials physics. The author provides practical guidelines for performing such experiments, backed up by finite element simulations. Subsequently, the book reports on two uses of the device. In the first, high pressures are used to tune to a Van Hove singularity in Sr2RuO4, while the effects on the unconventional superconductivity and the normal state properties are investigated. In the second experiment, precise and continuous strain control is used to probe symmetry breaking and novel phase formation in the vicinity of a quantum critical point in Sr3Ru2O7.
This second edition of Mass Metrology: The Newly Defined Kilogram has been thoroughly revised to reflect the recent redefinition of the kilogram in terms of Planck's constant. The necessity of defining the kilogram in terms of physical constants was already underscored in the first edition. However, the kilogram can also be defined in terms of Avogadro's number, using a collection of ions of heavy elements, by the levitation method, or using voltage and watt balances. The book also addresses the concepts of gravitational, inertial and conventional mass, and describes in detail the variation of acceleration due to gravity. Further topics covered in this second edition include: the effect of gravity variations on the reading of electronic balances derived with respect to latitude, altitude and earth topography; the classification of weights by the OIML; and maximum permissible error in different categories of weights prescribed by national and international organizations. The book also discusses group weighing techniques and the use of nanotechnology for the detection of mass differences as small as 10-24 g. Last but not least, readers will find details on the XRCD method for defining the kilogram in terms of Planck's constant.
Amperometric sensors, biosensors included, particularly rely on suitable electrode materials. Progress in material science has led to a wide variety of options that are available today. For the first time, these novel functional electrode coating materials are reviewed in this monograph, written by and for electroanalytical chemists. This includes intrinsically conducting, redox and ion-exchange polymers, metal and carbon nanostructures, silica based materials. Monolayers and relatively thick films are considered. The authors critically discuss preparation methods, in addition to chemical and physical characteristics of these new materials. They present various examples of emerging applications in electroanalysis. Due to its comprehensive coverage, the book will become an indispensable source for researchers working on the development and even proper use of new amperometric sensor systems.
This is the first single volume monograph that systematically summarizes the recent progress in using non-Fourier heat conduction theories to deal with the multiphysical behaviour of smart materials and structures. The book contains six chapters and starts with a brief introduction to Fourier and non-Fourier heat conduction theories. Non-Fourier heat conduction theories include Cattaneo-Vernotte, dual-phase-lag (DPL), three-phase-lag (TPL), fractional phase-lag, and nonlocal phase-lag heat theories. Then, the fundamentals of thermal wave characteristics are introduced through reviewing the methods for solving non-Fourier heat conduction theories and by presenting transient heat transport in representative homogeneous and advanced heterogeneous materials. The book provides the fundamentals of smart materials and structures, including the background, application, and governing equations. In particular, functionally-graded smart structures made of piezoelectric, piezomagnetic, and magnetoelectroelastic materials are introduced as they represent the recent development in the industry. A series of uncoupled thermal stress analyses on one-dimensional structures are also included. The volume ends with coupled thermal stress analyses of one-dimensional homogenous and heterogeneous smart piezoelectric structures considering different coupled thermopiezoelectric theories. Last but not least, fracture behavior of smart structures under thermal disturbance is investigated and the authors propose directions for future research on the topic of multiphysical analysis of smart materials.
This book presents the proceedings of Fatigue Durability India 2016, which was held on September 28-30 at J N Tata Auditorium, Indian Institute of Science, Bangalore. This 2nd International Conference & Exhibition brought international industrial experts and academics together on a single platform to facilitate the exchange of ideas and advances in the field of fatigue, durability and fracture mechanics and its applications. This book comprises articles on a broad spectrum of topics from design, engineering, testing and computational evaluation of components and systems for fatigue, durability, and fracture mechanics. The topics covered include interdisciplinary discussions on working aspects related to materials testing, evaluation of damage, nondestructive testing (NDT), failure analysis, finite element modeling (FEM) analysis, fatigue and fracture, processing, performance, and reliability. The contents of this book will appeal not only to academic researchers, but also to design engineers, failure analysts, maintenance engineers, certification personnel, and R&D professionals involved in a wide variety of industries.
This book provides an overview of recycled polyesters, which are an important sustainable raw material in textile production. It discusses the manufacturing methods and the unique properties of recycled polyesters manufactured using the different methods. It also highlights the various test methods and identification mechanisms for recycled polyesters, which are very essential for ensuring the traceability and conformity of usage of recycled polyester in the final product.
Non Destructive Testing and Non Destructive Evaluation using Ultrasounds covers an important field of applications and requires a wide range of fundamental theoretical, numerical and experimental investigations. In the present volume, the reader will find some relevant research results on wave propagation in complex materials and structures which are concerned with today's problems on composites, bonding, guided waves, contact or damage, imaging and structural noise. The fifth meeting of the Anglo-French Research Group on "Wave propagation in non homogeneous media with a view to Non Destructive testing" was held in Anglet, France, June 2-6, 2008.
This book offers a genuinely practical introduction to the most commonly encountered optical and non-optical systems used for the metrology and characterization of surfaces, including guidance on best practice, calibration, advantages and disadvantages, and interpretation of results. It enables the user to select the best approach in a given context. Most methods in surface metrology are based upon the interaction of light or electromagnetic radiation (UV, NIR, IR), and different optical effects are utilized to get a certain optical response from the surface; some of them record only the intensity reflected or scattered by the surface, others use interference of EM waves to obtain a characteristic response from the surface. The book covers techniques ranging from microscopy (including confocal, SNOM and digital holographic microscopy) through interferometry (including white light, multi-wavelength, grazing incidence and shearing) to spectral reflectometry and ellipsometry. The non-optical methods comprise tactile methods (stylus tip, AFM) as well as capacitive and inductive methods (capacitive sensors, eddy current sensors). The book provides: Overview of the working principles Description of advantages and disadvantages Currently achievable numbers for resolutions, repeatability, and reproducibility Examples of real-world applications A final chapter discusses examples where the combination of different surface metrology techniques in a multi-sensor system can reasonably contribute to a better understanding of surface properties as well as a faster characterization of surfaces in industrial applications. The book is aimed at scientists and engineers who use such methods for the measurement and characterization of surfaces across a wide range of fields and industries, including electronics, energy, automotive and medical engineering.
This thesis addresses elementary dislocation processes occurring in single-crystalline alloys based on Fe-Al, and investigates correspondences between dislocation distribution inside crystals characterized by transmission electron microscopy (TEM) and surface patterns observed using atomic force microscopy (AFM). Fe-Al alloys with different degrees of ordering were prepared and deformed in compression at ambient temperature in-situ inside the AFM device. The evolution of slip line structures was captured in the sequences of AFM images and wavy slip bands, while cross slip at the tip of the slip band and homogeneous fine slip lines were also identified. Further, the thesis develops a technique for constructing 3D representations of dislocations observed by TEM without the prohibitive difficulties of tomography, and creates 3D models of dislocation structures. Generally speaking, the thesis finds good agreement between AFM and TEM observations, confirming the value of AFM as a relevant tool for studying dislocations.
This book focuses on the matrix cracking behavior in ceramic-matrix composites (CMCs), including first matrix cracking behavior, matrix cracking evolution behavior, matrix crack opening and closure behavior considering temperature and oxidation. The micro-damage mechanisms are analyzed, and the micromechanical damage models are developed to characterize the cracking behavior. Experimental matrix cracking behavior of different CMCs at room and elevated temperatures is predicted. The book can help the material scientists and engineering designers to better understand the cracking behavior in CMCs.
This book focus on the challenges faced by cutting materials with superior mechanical and chemical characteristics, such as hardened steels, titanium alloys, super alloys, ceramics and metal matrix composites. Aspects such as costs and appropriate machining strategy are mentioned. The authors present the characteristics of the materials difficult to cut and comment on appropriate cutting tools for their machining. This book also serves as a reference tool for manufacturers working in industry.
This special anniversary book celebrates the success of this Springer book series highlighting materials modeling as the key to developing new engineering products and applications. In this 100th volume of "Advanced Structured Materials", international experts showcase the current state of the art and future trends in materials modeling, which is essential in order to fulfill the demanding requirements of next-generation engineering tasks.
This collection focuses on the characterization of minerals, metals, and materials as well as the application of characterization results on the processing of these materials. Papers cover topics such as clays, ceramics, composites, ferrous metals, non-ferrous metals, minerals, electronic materials, magnetic materials, environmental materials, advanced materials, and soft materials. In addition, papers covering materials extraction, materials processing, corrosion, welding, solidification, and method development are included. This book provides a current snapshot of characterization in materials science and its role in validating, informing, and driving current theories in the field of materials science. This volume will serve the dual purpose of furnishing a broad introduction of the field to novices while simultaneously serving to keep subject matter experts up-to-date.
This text discusses recent research techniques in the field of microwave processing of engineering materials by utilizing microwave radiation in the form of microwave hybrid heating (MHH). It is useful for industrial and household applications including the joining of materials, casting of bulk metal alloy material, drilling of borosilicate glass materials, development of cladding of different materials for friction, wear, and corrosion. The book: Discusses the development of high-temperature resistant materials using microwave processing Covers the latest research development in microwave processing in the field of healthcare i.e. bio-medical implants Highlights concepts of microwave heating in joining, cladding, and casting of metallic materials Explains mechanisms of failure of materials and protection in a comprehensive manner Provide readers the knowledge of microwave processing of materials in major thrust areas of engineering applications This book extensively highlights the latest advances in the field of microwave processing for engineering materials. It will serve as an ideal reference text for graduate students and academic researchers in the fields of materials science, manufacturing engineering, industrial engineering, mechanical engineering, and production engineering.
The content of this book includes a variety of nondestructive testing (NDT) methods, with many introductions to testing and application cases. The book proposes new ultrasonic testing technology for complex workpieces. It is hard for traditional NDT technology to realize the automatic detection of complex curved components, especially the automatic high-precision nondestructive detection of curved-surface components with variable curvature, variable thickness and complex contour. Therefore, the robotic NDT technique as a combination of manipulator technique and NDT technique can further improve the efficiency and accuracy of NDT. Robotic NDT Technique combines the physical principle of nondestructive testing with the flexible motion control of spatial attitude of articulated manipulator. With NDT as the constraint, it controls the motion attitude and azimuth angle of a transmitting and receiving transducer. Thus traditional NDT technique has developed from plane to curved surface, from 2D to many dimensions and from artificiality to intelligence, into a unique and systematic interdisciplinary robotic NDT technique.
The reader is provided with information about methods of calibration of light sources and photodetectors as well as responsiveness of spectral instruments ranging from near infrared to vacuum UV spectral, 1200 - 100 nm, and radiation intensities of up to several quanta per second in absolute and arbitrary units. The author describes for the first time original methods of measurements they created and draws upon over 40 years of experience in working with light sources and detectors to provide accurate and precise measurements. This book is the first to cover these aspects of radiometry and is divided into seven chapters thatexamine information about terminology, units, light sources and detectors, methods, including author's original ones, of absolute calibration of detectors, spectral instruments responsiveness, absolute measurements of radiation intensity of photoprocesses, and original methods of their study. Of interest to researchers measuring; luminescence spectra, light intensities from IR to vacuum UV, spectral range in wide-light intensity ranges, calibrate light sources and detectors, absolute or relative quantum yields of photoprocess determination.
|
![]() ![]() You may like...
Understanding Viscoelasticity - An…
Nhan Phan-Thien, Nam Mai-Duy
Hardcover
R3,298
Discovery Miles 32 980
Non-Destructive In Situ Strength…
Denys Breysse, Jean Paul Balayssac
Hardcover
R4,166
Discovery Miles 41 660
A Comprehensive Database of Tests on…
Zhongxuan Yang, Richard Jardine, …
Paperback
Materials Characterization Using…
Gerhard Huebschen, Iris Altpeter, …
Hardcover
|