![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Testing of materials
This volume covers various aspects of cross-linked polyethylene (XLPE). The contents include manufacture, morphology, structure, properties, applications, early stage development, cross-linking techniques, recycling process, physical and chemical properties as well as the scope and future aspects of XLPE. It focuses on the life cycle analysis of XLPE and their industrial applications and commercial importance. This book will be of use to academic and industry researchers, as well as graduate students working in the fields of polymer science and engineering, materials science, and chemical engineering.
A handbook stressing the enduring theoretical principles of the design of measurement systems. The material is organized to correspond to the sequence in which a management system is first conceived, then designed, built, installed, and maintained. Includes the latest information on digital signals, pattern recognition, digital data networks and feedback systems design, and focus on the problem of extracting signals in the presence of noise sources at any useful depth.
Concrete floors should be diagnosed in order to obtain the proper durability. Non-destructive testing (NDT) methods, which have numerous advantages and are very effective for in situ testing, are recommended for this purpose. Non-Destructive Diagnostics of Concrete Floors: Methods and Case Studies offers useful NDT methods, test methodologies, and case studies. This book contains classifications of NDT methods, examines their areas of usefulness in floor diagnostics, and explains the complementarity and reliability of NDT methods as well as the need to calibrate research equipment. It presents interesting case studies of concrete floors, such as dowelled floors, floors with a top layer made of stone slabs, industrial floors, industrial floors with a top layer of polyurethane-cement, layered floors, post-tensioned floors, and cement screeds. The authors have drawn on many years of experience in both academia and the practical diagnosis of concrete floors using NDT methods.
This is the first book summarizing the theoretical basics of thermal nondestructive testing (TNDT) by combining elements of heat conduction, infrared thermography, and industrial nondestructive testing. The text contains the physical models of TNDT, heat transfer in defective and sound structures, and thermal properties of materials. Also included are the optimization of TNDT procedures, defect characterization, data processing in TNDT, active and passive TNDT systems, as well as elements of statistical data treatment and decision making. This text contains in-depth descriptions of applications in infrared/thermal testing within aerospace, power production, building, as well as the conservation of artistic monuments The book is intended for the industrial specialists who are involved in technical diagnostics and nondestructive testing. It may also be useful for academic researchers, undergraduate, graduate and PhD university students.
This book collects several contributions presented at the 2019 meeting of the Italian Synchrotron Radiation Society (SILS), held in Camerino, Italy, from 9 to 11 September 2019. Topics included are recent developments in synchrotron radiation facilities and instrumentation, novel methods for data analysis, applications in the fields of materials physics and chemistry, Earth and environmental science, coherence in x-ray experiments. The book is intended for advanced students and researchers interested in synchrotron-based techniques and their application in diverse fields.
This timely resource offers complete, single-source coverage of ceramic mechanical property measurement techniques for use in component design as well as lifetime and reliability predictions-describing the theoretical aspects of chemistry and microstructure that affect mechanical properties. Presenting procedures for both room- and elevated-temperature applications, Mechanical Testing Methodology for Ceramic Design and Reliability discusses tests for strength, creep and creep rupture, fracture toughness, and fatigue the effects of environment on fracture and creep processes mechanisms of failure statistical experimental design and analysis standardization and the limitations of specific testing methods and more With over 1200 bibliographic citations, equations, drawings, and tables, Mechanical Testing Methodology for Ceramic Design and Reliability is a practical reference for ceramic, materials, mechanical, design, manufacturing, quality, and reliability engineers; ceramists; ceramic and materials scientists; and upper-level undergraduate and graduate students in these disciplines.
The book presents the work of the RILEM Technical Committee 249-ISC. Addressing the effective application of new recommendations for non-destructive in situ strength assessment of concrete, it provides information about the different steps of the investigation and processing of test results, until the delivery of strength estimates, and includes tables giving the minimum required number of cores in a variety of situations as well as several examples of how the recommendations can be used in practice. The book explores a topic which is of major importance, i.e. the assessment of concrete compressive strength in existing structures. This property (both mean and standard deviation) is a key input in many cases, such as the reinforcement of structures, the safety checking, the extension of service life. As the new RILEM recommendations imply a deep revision (and improvement) of field practice, the book is intended for managers of structures, structural engineers and specialists of NDT that have to answer these issues. More widely, it will benefit engineers and students who are interested in NDT and in the safety analysis of structures.
The theme for the 2021 conference was System-in-Package (SiP) technology. Papers include discussions on board and system level failure analysis; detecting counterfeit microelectronics; emerging failure analysis techniques and concepts; future challenges of failure analysis; scanning probe analysis; hardware attacks, security, and reverse engineering; microscopy and material characterization; nanoprobing and electrical characterization; and more. In the 21st century, the electronic market will be driven by consumers with demands of immediate entertainment, fast access to information, and communications anywhere in a personalized fashion and at affordable prices. The new challenge is not how many transistors can be built on a single chip, as in System-on-Chip (SoC), but rather how to integrate diverse circuits together predictably, harmoniously, and cost effectively. Instead of getting twice the transistors for the same cost as Moore's Law predicted in the past 50 years, the goal of SiP is to obtain the same number of transistors for half the cost within less than half the time to market.
This book addresses methods used in the synthesis of light alloys and composites for industrial applications. It begins with a broad introduction to virtually all aspects of the technology of light alloys and composite materials for aircraft and aerospace applications. The basic theory of fiber and particle reinforcements; light metallic material characteristics and composite systems; components forms, and manufacturing techniques and processes are discussed. The book then progresses to describe the production of alloys and composites by unconventional techniques, such as powder metallurgy, sandwich technique, severe plastic deformation, additive manufacturing, and thermal spray, making it appropriate for researchers in both academia and industry. It will be of special interest to aerospace engineers. Provides a broad introduction to the technology used in manufacturing light alloys and composite materials; Describes the current technologies employed in synthesizing light alloys made from advanced materials; Focuses on unconventional techniques used to produce light alloys and composites in aerospace applications.
This book presents the select proceedings of the International Conference on Functional Material, Manufacturing and Performances (ICFMMP) 2019. The book primarily covers recent research, theories, and practices relevant to surface engineering and processing of materials. It focuses on the lesser-known technologies and advanced manufacturing methods which may not be standardized yet but are highly beneficial to material and manufacturing industrial engineers. The book includes current advances in the field of coating, deposition, cladding, nanotechnology, surface finishing, precision machining, processing, and emerging advanced manufacturing technologies which enhance the performance of materials in terms of corrosion, wear and fatigue. The book can be a valuable reference for beginners, researchers, and professionals interested in materials processing and allied fields.
Geometric Dimensioning and Tolerancing: Workbook and Answerbook offers a host of effective examples that utilize the concepts discussed in the reference/text--covering all facets of geometric dimensioning and tolerancing, measurement, inspection, and gauging applicable in any on-the-job situation. The Workbook and Answerbook is a companion to Geometric Dimensioning and Tolerancing: Applications for use in Design, Manufacturing, and Inspection (ISBN: 0-8247-9309-9) and follows the reference text chapter by chapter.
This book presents machine learning as a set of pre-requisites, co-requisites, and post-requisites, focusing on mathematical concepts and engineering applications in advanced welding and cutting processes. It describes a number of advanced welding and cutting processes and then assesses the parametrical interdependencies of two entities, namely the data analysis and data visualization techniques, which form the core of machine learning. Subsequently, it discusses supervised learning, highlighting Python libraries such as NumPy, Pandas and Scikit Learn programming. It also includes case studies that employ machine learning for manufacturing processes in the engineering domain. The book not only provides beginners with an introduction to machine learning for applied sciences, enabling them to address global competitiveness and work on real-time technical challenges, it is also a valuable resource for scholars with domain knowledge.
The electrophoresis techniques are used in medicine, biochemistry, analytical chemistry, and biology to separate soluble and insoluble proteins, nucleic acids, chromosomes, viruses, as well as lysosomes, mitochondria, ribosomes and other cell organelles, red cells, tissue cells, and parasites. This book provides a view over the old electrophoresis techniques, as well as the recent developments in electrophoresis. Electrophoresis Fundamentals is based on the recent book Electrophoresis: Theory and Practice published in 2020 by De Gruyter. The previous book combines theory and technical applications with troubleshooting and problem solving. While Electrophoresis is intended for specialists, Electrophoresis Fundamentals is a book for laboratory technicians, students, biochemists, general practitioners, and more.
This book comprises select proceedings of the International Conference on Futuristic Trends in Materials and Manufacturing (ICFTMM) 2019. It covers latest findings and challenges in manufacturing processes and characterization of different advanced materials. Latest fabrication techniques of polymer based materials, biomaterials, and energy materials along with their practical applications are discussed. The contents also focus on cost-effective and energy-efficient sustainable and green manufacturing technologies. The contents of this book will be useful for students, researchers as well as industry professionals interested in characterization and fabrication of materials.
This book provides easy-to-understand explanations to systematically and comprehensively describe the X-ray CT technologies, techniques, and skills used for industrial and scientific purposes. Included are many references along with photographs, figures, and equations prepared by the author. These features all facilitate the reader's gaining a deeper understanding of the topics being discussed. The book presents expertise not only on fundamentals but also about hardware, software, and analytical methods for the benefit of technical users. The book targets engineers, researchers, and students who are involved in research, development, design, and quality assurance in industry and academia.
This book presents the select proceedings of the International Conference on Functional Material, Manufacturing and Performances (ICFMMP) 2019. The book provides the state-of-the-art research, development, and commercial prospective of recent advances in materials science and engineering. The contents cover various synthesis and fabrication routes of functional and smart materials for applications in mechanical engineering, manufacturing, metrology, nanotechnology, physics, chemical and biological sciences, civil engineering, food science among others. It also provides the evolutionary behavior of materials science for industrial applications. This book will be a useful resource for researchers as well as professionals interested in the highly interdisciplinary field of materials science.
This work elucidates the power of modern nuclear magnetic resonance (NMR) techniques to solve a wide range of practical problems that arise in both academic and industrial settings. This edition provides current information regarding the implementation and interpretation of NMR experiments, and contains material on: three- and four-dimensional NMR; the NMR analysis of peptides, proteins, carbohydrates and oligonucleotides; and more.
This book delivers a comprehensive overview of units of measurement. Beginning with a historical look at metrology in Ancient India, the book explains fundamental concepts in metrology such as basic, derived and dimensionless quantities, and introduces the concept of quantity calculus. It discusses and critically examines various three and four-dimensional systems of units used both presently and in the past, while explaining why only four base units are needed for a system of measurement. It discusses the Metre Convention as well as the creation of the International Bureau of Weights and Measures, and gives a detailed look at the evolution of the current SI base units of time, length, mass, electric current, temperature, intensity of illumination and substance. This updated second edition is extended with timely new chapters discussing past efforts to redefine the SI base units as well as the most recent 2019 redefinitions based entirely on the speed of light and other fundamental physical constants. Additionally, it provides biographical presentations of many of the historical figures behind commonly used units of measurements, such as Newton, Joule and Ohm, With its accessible and comprehensive treatment of the field, together with its unique presentation of the underlying history, this book is well suited to any student and researcher interested in the practical and historical aspects of the field of metrology.
If one dismisses the Prophetess Deborah who in her famous song after the victory over the Philistines sang "The mountains melted before the Lord" and her contemporary (on our time scale), the Egyptian Amenemhet, who designed the water clock, which was in fact the prototype of the capillary viscometer, the beginnings of modern rheology should be linked up with the works of the classics of natural sciences of the 19th century: J ames Clerk Maxwell, Lord Kelvin, and Ludwig Boltzmann, whose names are associated with the origination of the fundamental concepts of rheology. The founda tions of experimental rheology were also laid in the nineteenth century in the works of J. M. L. Poiseuille, T. Schwedoff, and others. The next step in the advancement of rheology dates back to the twenties of this century when E. C. Bingham, G. W. Scott-Blair, A. Nadai, and M. Reiner developed the fundamentals of the engineering approach to the technological properties of real materials, thereby outlining the numerous potential applications of rheology. The progress of polymer rheology was especially vigorous after World War II when polymeric materials found their way into industry and the home. Today, rheology is 60-70 per cent concerned with investigations of this kind of materials. Polymer rheology has evolved as an independent science over the last 10-15 years and is in its various aspects intimately entwined with molecular physics, continuum mechanics, and the processing of polymeric materials."
This book demonstrates the potential of novel in-situ experiments, performed on microscopic and macroscopic length scales, for investigating localized deformation processes in metallic materials, particularly their kinetics and the associated evolution of local strain fields. It features a broad methodological portfolio, spanning optical and electron microscopy, digital image correlation, infrared theromgraphy and acoustic emission testing, and particularly focuses on identifying the localized microscopic deformation processes in high-strength/high-ductility CrMnNi TRIP/TWIP (TRansformation Induced Plasticity/TWinning Induced Plasticity) steels. Presenting state-of-the art methodology applied to topical and pertinent problems in materials engineering, this book is a valuable resource for researchers and graduate students working in the field of plasticity and deformation of structural materials.
The collection focuses on the advancements of characterization of minerals, metals, and materials and the applications of characterization results on the processing of these materials. Advanced characterization methods, techniques, and new instruments are emphasized. Areas of interest include, but are not limited to: * Novel methods and techniques for characterizing materials across a spectrum of systems and processes. * Characterization of mechanical, thermal, electrical, optical, dielectric, magnetic, physical, and other properties of materials. * Characterization of structural, morphological, and topographical natures of materials at micro- and nano- scales. * Characterization of extraction and processing including process development and analysis. * Advances in instrument developments for microstructure analysis and performance evaluation of materials, such as computer tomography (CT), X-ray and neutron diffraction, electron microscopy (SEM, FIB, TEM), and spectroscopy (EDS, WDS, EBSD) techniques. * 2D and 3D modelling for materials characterization. The book explores scientific processes to characterize materials using modern technologies, and focuses on the interrelationships and interdependence among processing, structure, properties, and performance of materials.
This book is a liber amicorum to Professor Sergei Konstantinovich Godunov and gathers contributions by renowned scientists in honor of his 90th birthday. The contributions address those fields that Professor Godunov is most famous for: differential and difference equations, partial differential equations, equations of mathematical physics, mathematical modeling, difference schemes, advanced computational methods for hyperbolic equations, computational methods for linear algebra, and mathematical problems in continuum mechanics.
The current state of understanding of emerging iron alloys and high-alloy ferrous systems, in comparison with some conventional steels, is compiled in this single volume to further their development. While most of the conventional steels are produced routinely today, many advanced high strength steels and iron-based alloys are still in the laboratory stage. The iron-based emerging alloys can yield high levels of mechanical and physical properties due to their new alloy concepts and novel microstructures leading to multiple benefits of their use in terms of sustainability and environmental impact. This book contains introductory chapters that present the requisite background knowledge on thermodynamics, phase diagrams, and processing routes used for the ferrous alloys to enable the readers a smooth understanding of the main chapters. Then, an overview of the conventional microalloyed steels and advanced high strength steels is given to present the benchmark of the existing steels and ferrous alloys manifesting their current state-of-the-art in terms of physical metallurgy and engineering applications. Subsequent chapters detail novel, emerging ferrous alloys and high-alloy ferrous systems. Summarizes the state-of-the-art of emerging iron-based alloys and the new processing and physical metallurgy-related developments of high-alloy iron systems; Explores new iron-based systems driven by the need for new properties, enhanced performance, sustainable processes and educed environmental impact; Compiles cutting-edge research on the progress of materials science of iron-based systems, from physical metallurgy to engineering applications, and possible avenues for future research.
This book investigates the time-dependent behavior of fiber-reinforced ceramic-matrix composites (CMCs) at elevated temperatures. The author combines the time-dependent damage mechanisms of interface and fiber oxidation and fracture with the micromechanical approach to establish the relationships between the first matrix cracking stress, matrix multiple cracking evolution, tensile strength, tensile stress-strain curves and tensile fatigue of fiber-reinforced CMCs and time. Then, using damage models of energy balance, the fracture mechanics approach, critical matrix strain energy criterion, Global Load Sharing criterion, and hysteresis loops he determines the first matrix cracking stress, interface debonded length, matrix cracking density, fibers failure probability, tensile strength, tensile stress-strain curves and fatigue hysteresis loops. Lastly, he predicts the time-dependent mechanical behavior of different fiber-reinforced CMCs, i.e., C/SiC and SiC/SiC, using the developed approaches, in order to reduce the failure risk during the operation of aero engines. The book is intended for undergraduate and graduate students who are interested in the mechanical behavior of CMCs, researchers investigating the damage evolution of CMCs at elevated temperatures, and designers responsible for hot-section CMC components in aero engines.
The book examines advanced, non-standardized techniques that have been developed for determining different properties of cement paste, mortar and concrete, and provides state-of-the-art information on methods for monitoring hydration-induced changes in cement-based materials (CBMs). These methods are often nondestructive and allow quasi-continuous monitoring covering the time span from placement of the material to formation of a fully hardened cement composite. The book also presents various applications of acoustic emission for characterizing fresh concrete, recent developments in ultrasonic methods for characterizing CBMs since placement, application of ambient response methods for measuring elastic modulus, methods for determining deformational characteristics of CBMs since setting and methods for in situ measurements of stresses in concrete elements during hardening. |
![]() ![]() You may like...
The Social Semiotics of Populism
Sebastian Moreno Barreneche
Hardcover
R3,375
Discovery Miles 33 750
Speaking as Women Leaders - Meetings in…
Judith Baxter, Haleema Al-A'Ali
Hardcover
R1,872
Discovery Miles 18 720
|