![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Testing of materials
This collection gives broad and up-to-date results in the research and development of materials characterization and processing. Topics covered include characterization methods, ferrous materials, non-ferrous materials, minerals, ceramics, polymer and composites, powders, extraction, microstructure, mechanical behavior, processing, corrosion, welding, solidification, magnetic, electronic, environmental, nano-materials, and advanced materials The book explores scientific processes to characterize materials using modern technologies, and focuses on the interrelationships and interdependence among processing, structure, properties, and performance of materials.
Offers a comprehensive overview of all types of tests used in lubricant condition monitoring programmes. Discusses monitoring the condition of all types of components, machines, equipment, and systems used in all industries. Considers new and emerging machines, equipment, and systems, including electric and hybrid vehicles. Suggests which tests to use for each type of machine, equipment, or system and, just as importantly, which tests not to use. Provides practical examples of how to set up, run, and manage condition monitoring programmes and how to achieve significant cost savings through planned and predictive maintenance schedules.
Dipolar Recoupling, by Niels Chr. Nielsen, Lasse A. Strasso and Anders B. Nielsen.- Solid-State NMR Techniques for the Structural Determination of Amyloid Fibrils, by Jerry C. C. Chan.- Solid-State 19F-NMR of Peptides in Native Membranes, by Katja Koch, Sergii Afonin, Marco Ieronimo, Marina Berditsch and Anne S. Ulrich.- Probing Quadrupolar Nuclei by Solid-State NMR Spectroscopy: Recent Advances, by Christian Fernandez and Marek Pruski.- Solid State NMR of Porous Materials Zeolites and Related Materials, by Hubert Koller and Mark Weiss.- Solid-State NMR of Inorganic Semiconductors, by James P. Yesinowski.-"
A one-stop resource on all aspects of semiconductor wafer bonding for materials scientists and electrical engineers Semiconductor Wafer Bonding addresses the entire spectrum of mainstream and likely future applications of wafer bonding. It examines all of the important issues surrounding this technology, including basic interactions between flat surfaces, the influence of particles, surface steps and cavities, surface preparation and room-temperature wafer bonding, thermal treatment of bonded wafer pairs, and much more. This unique, one-stop resource consolidates information previously available only by time-consuming searches through technical journals, proceedings, and book chapters for more than 1,000 published articles on wafer bonding. It covers all materials used for wafer bonding—including silicon, III-V compounds, fused and crystalline quartz, glass, silicon carbide, sapphire, ferroelectrics, and many others. For materials scientists and electrical engineers who need to exploit the potential of this flourishing technology, Semiconductor Wafer Bonding is a convenient one-stop resource for answers to many common questions. It is also an excellent text/reference for graduate students eager to learn about this interdisciplinary field, which spans surface chemistry, solid-state physics, materials science, and electrical engineering.
This book introduces the peridynamic (PD) differential operator, which enables the nonlocal form of local differentiation. PD is a bridge between differentiation and integration. It provides the computational solution of complex field equations and evaluation of derivatives of smooth or scattered data in the presence of discontinuities. PD also serves as a natural filter to smooth noisy data and to recover missing data. This book starts with an overview of the PD concept, the derivation of the PD differential operator, its numerical implementation for the spatial and temporal derivatives, and the description of sources of error. The applications concern interpolation, regression, and smoothing of data, solutions to nonlinear ordinary differential equations, single- and multi-field partial differential equations and integro-differential equations. It describes the derivation of the weak form of PD Poisson's and Navier's equations for direct imposition of essential and natural boundary conditions. It also presents an alternative approach for the PD differential operator based on the least squares minimization. Peridynamic Differential Operator for Numerical Analysis is suitable for both advanced-level student and researchers, demonstrating how to construct solutions to all of the applications. Provided as supplementary material, solution algorithms for a set of selected applications are available for more details in the numerical implementation.
Presents a new physical and mathematical theory of irreversible deformations and ductile fracture of metals that acknowledges the continuous change in the structure of materials during deformation and the accumulation of deformation damage. Plastic deformation, viscous destruction, evolution of structure, creep processes, and long-term strength of metals and stress relaxation are described in the framework of a unified approach and model. The author then expands this into a mathematical model for determining the mechanical characteristics of quasi-samples of standard mechanical properties in deformed semi-finished products.
This book presents a detailed description of the basic semiconductor physics. The reader is assumed to have a basic command of mathematics and some elementary knowledge of solid state physics. The text covers a wide range of important phenomena in semiconductors, from the simple to the advanced. The reader can understand three different methods of energy band calculations, empirical pseudo-potential, k.p perturbation and tight-binding methods. The effective mass approximation and electron motion in a periodic potential, Boltzmann transport equation and deformation potentials used for full band Monte Carlo simulation are discussed. Experiments and theoretical analysis of cyclotron resonance are discussed in detail because the results are essential to the understanding of semiconductor physics. Optical and transport properties, magneto-transport, two dimensional electron gas transport (HEMT and MOSFET), and quantum transport are reviewed, explaining optical transition, electron phonon interactions, electron mobility. Recent progress in quantum structures such as two-dimensional electron gas, superlattices, quantum Hall effect, electron confinement and the Landauer formula are included. The Quantum Hall effect is presented with different models. In the second edition, the addition energy and electronic structure of a quantum dot (artificial atom) are explained with the help of Slater determinants. Also the physics of semiconductor Lasers is described in detail including Einstein coefficients, stimulated emission, spontaneous emission, laser gain, double heterostructures, blue Lasers, optical confinement, laser modes, strained quantum wells lasers which will give insight into the physics of various kinds of semiconductor lasers, in addition to the various processes of luminescence.
Presents, for the first time, the new method, named the "flow measurement reaction method", and the "reaction flow meters", configured by its implementation so far. Systematic detailing of all basic types of reaction flowmeters, according to their presented general classification and following the evolution of their structural and functional complexity. Explores and demonstrates the universal application of "the reaction force method of flow measurement" for configuration of the reaction flowmeters both without and with moving parts, respectively of their specific connections. Unitary, consistent and coherent presentation, in a logical sequence, of all different basic types of reaction flowmeters, following the same manner (basic configuration and operation, functional equations, constructive solutions, main features). The book is an efficient tool for predictable design of new types of reaction flowmeters, by following the logical steps (questions) already taken in the configuration of the reaction flowmeters presented, and the diversification of the answers given to them.
The book presents recent developments in the field of composites, investigated by Broadband Dielectric Spectroscopy (BDS) and sheds a special focus on nanocomposites. This volume compares the results obtained by BDS with data from other methods like hyphenated calorimetry, dynamical-mechanical spectroscopy, NMR spectroscopy and neutron scattering. The addressed systems range from all kinds of model systems, such as polymers filled with spherical silica particles, advanced materials such as polymers with molecular stickers or hyperbranched polymer-based matrices to industrially significant systems, like epoxy-based materials. The book offers an excellent insight to a valuable application of dielectric spectroscopy and it is a helpful guide for every scientist who wants to study dynamics in composite materials.
This book offers historical and state-of-the-art molecular spectroscopy methods and applications in dynamic compression science, aimed at the upcoming generation in physical sciences involved in studies of materials at extremes. It begins with addressing the motivation for probing shock compressed molecular materials with spectroscopy and then reviews historical developments and the basics of the various spectroscopic methods that have been utilized. Introductory chapters are devoted to fundamentals of molecular spectroscopy, overviews of dynamic compression technologies, and diagnostics used to quantify the shock compression state during spectroscopy experiments. Subsequent chapters describe all the molecular spectroscopic methods used in shock compression research to date, including theory, experimental details for application to shocked materials, and difficulties that can be encountered. Each of these chapters also includes a section comparing static compression results. The last chapter offers an outlook for the future, which leads the next-generation readers to tackling persistent problems.
This textbook offers readers an introduction to fracture mechanics, equipping them to grasp the basic ideas of the presented approaches to modeling in applied mechanics In the first part, the book reviews and expands on the classical theory of elastic and elasto-plastic material behavior. A solid understanding of these two topics is the essential prerequisite to advancing to damage and fracture mechanics. Thus, the second part of this course provides an introduction to the treatment of damage and fractures in the context of applied mechanics Wherever possible, the one-dimensional case is first introduced and then generalized in a following step. This departs somewhat from the more classical approach, where first the most general case is derived and then simplified to special cases. In general, the required mathematics background is kept to a minimum Tutorials are included at the end of each chapter, presenting the major steps for the solution and offering valuable tips and tricks. The supplementary problems featured in the book
This book describes technical and practical aspects of pipeline damage. It summarizes the phenomena, mechanisms and management of pipeline corrosion in-service. The topics discussed include pipelines fracture mechanics, damage mechanisms and evolution, and pipeline integrity assessment. The concept of acceptable risk is also elucidated and the future application of new knowledge management tools is considered.
Dynamic Response of Advanced Ceramics Discover fundamental concepts and recent advances in experimental, analytical, and computational research into the dynamic behavior of ceramics In Dynamic Response of Advanced Ceramics, an accomplished team of internationally renowned researchers delivers a comprehensive exploration of foundational and advanced concepts in experimental, analytical, and computational aspects of the dynamic behavior of advanced structural ceramics and transparent materials. The book discusses new techniques used for determination of dynamic hardness and dynamic fracture toughness, as well as edge-on-impact experiments for imaging evolving damage patterns at high impact velocities. The authors also include descriptions of the dynamic deformation behavior of icosahedral ceramics and the dynamic behavior of several transparent materials, like chemically strengthened glass and glass ceramics. The developments discussed within the book have applications in everything from high-speed machining to cutting, grinding, and blast protection. Readers will also benefit from a presentation of emerging trends and directions in research on this subject as well as current challenges in experimental and computational domains, including: An introduction to the history of ceramic materials and their dynamic behavior, including examples of material response to high-strain-rate loading An exploration of high-strain-rate experimental techniques, like 1D elastic stress-wave propagation techniques, shock waves, and impact testing Discussions of the static and dynamic responses of ceramics and the shock response of brittle solids An overview of deformation mechanisms during projectile impact on a confined ceramic, including damage evolution during the nonpenetration and penetration phases. Perfect for researchers, scientists, and engineers working on ballistic impact and shock response of brittle materials, Dynamic Response of Advanced Ceramics will also earn a place in the libraries of industry personnel studying impact-resistant solutions for a variety of applications.
Finite Element Analysis of Solids and Structures combines the theory of elasticity (advanced analytical treatment of stress analysis problems) and finite element methods (numerical details of finite element formulations) into one academic course derived from the author's teaching, research, and applied work in automotive product development as well as in civil structural analysis. Features Gives equal weight to the theoretical details and FEA software use for problem solution by using finite element software packages Emphasizes understanding the deformation behavior of finite elements that directly affect the quality of actual analysis results Reduces the focus on hand calculation of property matrices, thus freeing up time to do more software experimentation with different FEA formulations Includes chapters dedicated to showing the use of FEA models in engineering assessment for strength, fatigue, and structural vibration properties Features an easy to follow format for guided learning and practice problems to be solved by using FEA software package, and with hand calculations for model validation This textbook contains 12 discrete chapters that can be covered in a single semester university graduate course on finite element analysis methods. It also serves as a reference for practicing engineers working on design assessment and analysis of solids and structures. Teaching ancillaries include a solutions manual (with data files) and lecture slides for adopting professors.
This book is a primer on the interplay between plasma and materials in a fusion reactor, so-called plasma-materials interactions (PMIs), highlighting materials and their influence on plasma through PMI. It aims to demonstrate that a plasma-facing surface (PFS) responds actively to fusion plasma and that the clarifying nature of PFS is indispensable to understanding the influence of PFS on plasma. It describes the modern insight into PMI, namely, relevant feedback to plasma performance from plasma-facing material (PFM) on changes in a material surface by plasma power load by radiation and particles, contrary to a conventional view that unilateral influence from plasma on PFM is dominant in PMI. There are many books and reviews on PMI in the context of plasma physics, that is, how plasma or plasma confinement works in PMI. By contrast, this book features a materials aspect in PMI focusing on changes caused by heat and particle load from plasma: how PFMs are changed by plasma exposure and then, accordingly, how the changed PFM interacts with plasma.
Metallic Glass-Based Nanocomposites: Molecular Dynamics Study of Properties provides readers with an overview of the most commonly used tools for MD simulation of metallic glass composites and provides all the basic steps necessary for simulating any material on Materials Studio. After reading this book, readers will be able to model their own problems on this tool for predicting the properties of metallic glass composites. This book provides an introduction to metallic glasses with definitions and classifications, provides detailed explanations of various types of composites, reinforcements and matrices, and explores the basic mechanisms of reinforcement-MG interaction during mechanical loading. It explains various models for calculating the thermal conductivity of metallic glass composites and provides examples of molecular dynamics simulations. Aimed at students and researchers, this book caters to the needs of those working in the field of molecular dynamics (MD) simulation of metallic glass composites.
This collection presents papers from a symposium on extraction of rare metals as well as rare extraction processing techniques used in metal production. Topics include the extraction and processing of elements such as rare earth metals including yttrium and scandium, gold, vanadium, cesium, zinc, copper, tellurium, bismuth, potassium, aluminum, iridium, titanium, manganese, uranium, rhenium, and tungsten. Rare processing techniques covered include supercritical fluid extraction, direct extraction processes for rare-earth recovery, biosorption of precious metals, and recovery of valuable components of commodity metals such as zinc, nickel, and metals from slag.
The broad scope of the Applications of the Moessbauer Effect to interdisciplinary subjects makes this volume an outstanding source of information to researchers and graduate students, who will find the unique results of Moessbauer spectroscopy a valuable aid and complement to their research in conjunction with other techniques. In this volume, applications to mineralogy, catalysis, soil science, amorphous materials, nanoparticles, magnetic materials, nanotechnology, metallurgy, corrosion, and magnetism, have been put together in original works produced by invited speakers and different research teams across the continent. Reprint from Hyperfine Interactions (HYPE), volumes 202/1-3 and 203/1-3, 2011.
This volume contains the edited version of lectures and selected research contributions presented at the NATO ADVANCED STUDY INSTITUTE on ADVANCES IN FATIGUE SCIENCE AND TECHNOLOGY. held in Alvor. Portugal, 4th to 15th of April 1988. and organized by CEMUL - Center of Mechanics and Materials of The Technical University of Lisbon. The Institute was attended by 101 participants, including 15 lecturers. from 14 countries. The participants were leading scientists and engineers from universities, research institutions and industry. and also Ph.D~ students. Some participants presented papers during the Institute reporting the state-of-art of their research projects. All the sessions wel'e very active and quite extensive discussions on scientific aspects took place during the Institute. The Advanced Study Institute provided a forum for interaction among eminent scientists and engineers. from different schools of thought and young researchers. The Institute addressed the foundations and current state of the art of essential aspects related to fatigue science and technology, namely: Short Cracks, Metallurgical Aspects, Environmental Fatigue, Threshold Behaviour, Notch Behaviour. Creep and Fatigue Interactions at High Temperature, Multiaxial Fatigue, Low Cycle Fatigue, Methodology of Fatigue Testing, Variable Amplitude Fatigue, Fatigue of Advanced Materials. Elastic-Plastic Fatigue, and several engineering applications such as welded joints, energy systems, offshore structures, automotive industry, machine and engine components. This book is organized in three parts: Part I: Fundamentals of Fatigue Part II: Engineering Applications Part III: Research Contributions The research contributions covered most of the areas referred above.
This book provides an understanding of peer-reviewed international construction materials and their testing methods in a simplified manner at a high technical level. It focuses on specific construction materials, such as cement, concrete, bricks, lime, paints, steel and so forth, distributed in ten different chapters. Using real-time quality control as the underlying determinant, the book material exclusively follows Indian, American, European, German and South African standards. Relevant modern sophisticated material testing techniques, like scanning electron microscope (SEM), thermo gravimetric analysis (TGA) and X-Ray diffraction (XRD), are also described. Aimed at undergraduate, senior undergraduate and early career professionals in civil engineering and construction engineering, this book Gives a clear background of material testing and its importance Includes step-by-step procedures for easy understanding of and for performing the tests Covers Indian, ASTM, South African, DIN German and European Standards Includes basic and advanced techniques for chemical admixtures Each chapter concludes with practice questions, including 400+ solved questions and 50+ test procedures in total
Nanoindentation, Third Edition gives a detailed account of the most up-to-date research in this important field of materials testing. As in previous editions, extensive theoretical treatments are provided and explained in a clear and consistent manner that will satisfy both experienced and novice scientists and engineers. Additionally, numerous examples of the applications of the technique are provided directly from manufacturers of nanoindentation instruments. A helpful series of appendices provides essential reference information that includes a list of frequently asked questions. The new edition has been restructured to provide results of the latest research and developments in the field of mechanical testing while retaining the essential background and introductory, but authoritative nature, of the previous editions. The new edition also expands on the instrumentation and applications chapters by including material sourced direct from the instrument manufacturers in this field. Aimed at graduate student level, this book is designed to fill a need associated with the use of nanoindentation as a quantitative test method for mechanical properties of small volumes of materials.
Experimental Vibration Analysis for Civil Structures: Testing, Sensing, Monitoring, and Control covers a wide range of topics in the areas of vibration testing, instrumentation, and analysis of civil engineering and critical infrastructure. It explains how recent research, development, and applications in experimental vibration analysis of civil engineering structures have progressed significantly due to advancements in the fields of sensor and testing technologies, instrumentation, data acquisition systems, computer technology, computational modeling and simulation of large and complex civil infrastructure systems. The book also examines how cutting-edge artificial intelligence and data analytics can be applied to infrastructure systems. Features: Explains how recent technological developments have resulted in addressing the challenge of designing more resilient infrastructure Examines numerous research studies conducted by leading scholars in the field of infrastructure systems and civil engineering Presents the most emergent fields of civil engineering design, such as data analytics and Artificial Intelligence for the analysis and performance assessment of infrastructure systems and their resilience Emphasizes the importance of an interdisciplinary approach to develop the modeling, analysis, and experimental tools for designing more resilient and intelligent infrastructures Appropriate for practicing engineers and upper-level students, Experimental Vibration Analysis for Civil Structures: Testing, Sensing, Monitoring, and Control serves as a strategic roadmap for further research in the field of vibration testing and instrumentation of infrastructure systems.
This volume represents 27 peer-reviewed papers presented at the ICOP 2013 symposium which will help conservators and curators recognise problems and interpret visual changes on paintings, which in turn give a more solid basis for decisions on the treatment of these paintings. The subject matter ranges from developments of paint technology, working methods of individual artists, through characterisation of paints and paint surfaces, paint degradation vs. long time stability, to observations of issues in collections, cleaning and other treatment issues as well as new conservation approaches.
This book addresses issues pertinent to mechanics and stress generation, especially in recent advanced cases of technology developments, spanning from micrometer interconnects in solar photovoltaics (PV), next-gen energy storage devices to multilayers of nano-scale composites enabling novel stretchable/flexible conductor technologies. In these cases, the mechanics of materials have been pushed to the extreme edges of human knowledge to enable cutting-edge, unprecedented functionalities and technological innovations. Synchrotron X-ray diffraction, in situ small-scale mechanical testing combined with physics-based computational modeling/simulation, has been widely used approaches to probe these mechanics of the materials at their extreme limits due to their recently discovered distinct advantages. The techniques discussed in this manuscript are highlights specially curated from the broad body of work recently reported in the literature, especially ones that the author had led the pursuits at the frontier himself. Extreme stress generation in these advanced material leads to often new failure modes, and hence, the reliability of the final product is directly affected. From the recent topics and various advanced case studies covered in this book, the reader gets an updated knowledge of how new mechanics can and has been applied in Design-for-Reliability (DfR) for some of the latest technological innovations known in our modern world. Further, this also helps in building better designs, which may avoid the pitfalls of the current practiced trends. |
![]() ![]() You may like...
The Aerodynamics of Heavy Vehicles II…
Fred Browand, Rose McCallen, …
Mixed media product
R4,667
Discovery Miles 46 670
|