![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Testing of materials
This book focuses on the modern development of techniques for analysis of the hierarchical structure of polymers from both the experimental and theoretical points of view. Starting with molecular and crystal symmetry, the author explains fundamental and professional methods, such as wide- and small-angle X-ray scattering, neutron diffraction, electron diffraction, FTIR and Raman spectroscopy, NMR, and synchrotron radiation. In addition, the author explains another indispensable method, computer simulation, which includes energy calculation, lattice dynamics, molecular dynamics, and quantum chemistry. These various methods are described in a systematic way so that the reader can utilize them for the purpose of 3D structure analysis of polymers. Not only such analytical knowledge but also the preparation techniques of samples necessary for these measurements and the methods of analyzing the experimental data collected in this way are given in a concrete manner. Examples are offered to help master the principles of how to clarify the static structures and dynamic structural changes in the phase transitions of various kinds of crystalline polymers that are revealed by these novel methods. The examples are quite useful for readers who want to apply these techniques in finding practical solutions to concrete problems that are encountered in their own research. The principal audience for this book is made up of young professional researchers including those working in industry, but it can also be used as an excellent reference for graduate-level students. This book is the first volume of a two-volume set with Structural Science of Crystalline Polymers: A Microscopically Viewed Structure-Property Relationship being the second volume by the same author.
This book presents physical units and widely used physical formulas, which are given together with conversion factors in various units. It includes frequently used atomic spectra and data for atoms, ions and molecules, as well as potential curves for diatomic molecules, and provides numerical parameters for transport phenomena in gases and plasmas. Further, the rate constants of a number of processes in atmospheric ionized air have been added to this second edition of the book. The numerical data has been selected from the information on atoms, atomic systems, atomic processes and models for atomic physics in this area, and the numerical parameters of atoms, ions and atom systems are included in periodical tables of elements.
This book is devoted to the development of the shape memory materials and their applications. It covers many aspects of smart materials. It also describes the method on how we can obtain not only large recovery strains but also high recovery stress, energy storage and energy dissipation in applications. This volume treats the mechanical properties of shape memory alloys, shape memory polymers and the constitutive equations of the materials which are necessary to design the shape memory elements in applications. It also deals with the fatigue properties of materials, the method to design the shape memory elements, and the shape memory composites. The authors are international experts on shape memory alloys and shape memory polymers in the metallurgical, chemical, mechanical and engineering fields. The book will be of interest to graduate students, engineers, scientists and designers who are working in the field of electric and mechanical engineering, industries, medical engineering, aerospace engineering, robots, automatic machines, clothes and recycling for research, design and manufacturing.
The subject of this book is to study the porous media and the transport processes occur there. As a first step, the authors discuss several techniques for artificial representation of porous. Afterwards, they describe the single and multi phase flows in simplistic and complex porous structures in terms of macroscopic and microscopic equations as well as of their analytical and numerical solutions. Furthermore, macroscopic quantities such as permeability are introduced and reviewed. The book also discusses with mass transport processes in the porous media which are further strengthen by experimental validation and specific technological applications. This book makes use of state-of-the-art techniques for the modeling of transport processes in porous structures, and considers of realistic sorption mechanisms. It the applies advanced mathematical techniques for upscaling of the major quantities, and presents the experimental investigation and application, namely, experimental methods for the measurement of relevant transport properties. The main benefit of the book is that it discusses all the topics related to transport in porous media (including state-of-the-art applications) and presents some of the most important theoretical, numerical and experimental developments in porous media domain, providing a self-contained major reference that is appealing to both the scientists and the engineers. At the same time, these topics encounter a variety of scientific and engineering disciplines, such as chemical, civil, agricultural, mechanical engineering. The book is divided in several chapters that intend to be a resume of the current state of knowledge for benefit of related professionals and scientists.
This book provides insight into the underlying basic theories and concepts in X-ray, light, and neutron scattering. The three scattering principles are systematically presented, together with a unified description based on elastic scattering of electromagnetic waves and the Schroedinger wave from matter. These explanations are presented with an introduction of their common Born approximation using a consistent set of symbols and terminology and with step-by-step derivations of equations. This book emphasizes the combined applications of these three scattering methods, wherever and whenever possible, as a very powerful methodology for characterization of internal structures of soft matters in the length scale ranging from subnanometers to a few 10 micron meters. These applications include explorations for evolution of hierarchically self-organized internal structures of a variety of soft matters, including cells, under diverse environmental conditions. This book will not only be an excellent resource for graduate students and academic researchers who analyze structures of soft matters and polymers, but it will also be useful for researchers in industries.
All living things contain carbon in some form, as it is the primary component of macromolecules including proteins, lipids, nucleic acids (RNA and DNA), and carbohydrates. As a matter of fact, it is the backbone of all organic (chemistry) compounds forming different kinds of bonds. Carbon: The Black, the Gray and the Transparent is not a complete scientific history of the material, but a book that describes key discoveries about this old faithful element while encouraging broader perspectives and approaches to its research due to its vast applications. All allotropes of carbon are described in this book, along with their properties, uses, and methods of procurement or manufacturing. Black carbon is represented by coal, gray carbon is represented by graphite, and transparent carbon is represented by diamond.
This collection focuses on all aspects of science and technology related to friction stir welding and processing.
This book covers state-of-the-art technologies, principles, methods and industrial applications of electronic waste (e-waste) and waste PCB (WPCB) recycling. It focuses on cutting-edge mechanical separation processes and pyro- and hydro-metallurgical treatment methods. De-soldering, selective dismantling, and dry separation methods (including the use of gravity, magnetic and electrostatic techniques) are discussed in detail, noting the patents related to each. The volume discusses the available industrial equipment and plant flowsheets used for WPCB recycling in detail, while addressing potential future directions of the field. This practical, comprehensive, and multidisciplinary reference will appeal to professionals throughout global industrial, academic and government institutions interested in addressing the growing problem of e-waste. Covers principles, methods and industrial applications of e-waste and PCB recycling; Details state-of-the-art mechanical separation processes and pyro- and hydro-metallurgical treatment methods; Describes the available industrial equipment used and plant flowsheets for PCB recycling and addresses potential future developments of this important field.
This book is the 2nd special volume dedicated to the memory of Gerard Maugin. Over 30 leading scientists present their contribution to reflect the vast field of scientific activity of Gerard Maugin. The topics of contributions employing often non-standard methods (generalized model) in this volume show the wide range of subjects that were covered by this exceptional scientific leader. The topics range from micromechanical basics to engineering applications, focusing on new models and applications of well-known models to new problems. They include micro-macro aspects, computational efforts, possibilities to identify the constitutive equations, and old problems with incorrect or non-satisfying solutions based on the classical continua assumptions.
This is the first book summarizing the theoretical basics of thermal nondestructive testing (TNDT) by combining elements of heat conduction, infrared thermography, and industrial nondestructive testing. The text contains the physical models of TNDT, heat transfer in defective and sound structures, and thermal properties of materials. Also included are the optimization of TNDT procedures, defect characterization, data processing in TNDT, active and passive TNDT systems, as well as elements of statistical data treatment and decision making. This text contains in-depth descriptions of applications in infrared/thermal testing within aerospace, power production, building, as well as the conservation of artistic monuments The book is intended for the industrial specialists who are involved in technical diagnostics and nondestructive testing. It may also be useful for academic researchers, undergraduate, graduate and PhD university students.
Non-destructive testing (NDT) systems can generate incomplete, incorrect or conflicting information about a flaw or a defect. Therefore, the use of more than one NDT system is usually required for accurate defect detection and/or quantification. In addition to a reduction in inspection time, important cost savings could be achieved if a data fusion process is developed to combine signals from multisensor systems for manual and remotely operated inspections. This gathering of data from multiple sources and an efficient processing of information help in decision making, reduce signal uncertainty and increase the overall performance of a non-destructive examination. This book gathers, for the first time, essays from leading NDT experts involved in data fusion. It explores the concept of data fusion by providing a comprehensive review and analysis of the applications of NDT data fusion. This publication concentrates on NDT data fusion for industrial applications and highlights progress and applications in the field of data fusion in areas ranging from materials testing in the aerospace industry to medical applications. Each chapter contains a specific case study with a theoretical part but also presents experimental results from a practical point of view. The book should be considered more as a pragmatic introduction to the applications of NDT data fusion rather than a rigorous basis for theoretical studies.
Neutrons are extremely versatile probes for investigating structure and dynamics in condensed matter. Due to their large penetration depth, they are ideal for in-situ measurements of samples situated in sophisticated and advanced environments. The advent of new high-intensity neutron sources and instruments, as well as the development of new real-time techniques, allows the tracking of transformation processes in condensed matter on a microscopic scale. The present volume provides a review of the state of the art of this new and exciting field of kinetics with neutrons.
"Long-Term Durability of Polymeric Matrix Composites" presents a comprehensive knowledge-set of matrix, fiber and interphase behavior under long-term aging conditions, theoretical modeling and experimental methods. This book covers long-term constituent behavior, predictive methodologies, experimental validation and design practice. Readers will also find a discussion of various applications, including aging air craft structures, aging civil infrastructure, in addition to engines and high temperature applications.
This book describes the latest developments in the new research discipline of X-ray nanochemistry, which uses nanomaterials to enhance the effectiveness of X-ray irradiation. Nanomaterials now can be synthesized in such a way as to meet the demand for complex functions that enhance the X-ray effect. Innovative methods of delivering the X-rays, which can interact with those nanomaterials much more strongly than energetic electrons and gamma rays, also create new opportunities to enhance the X-ray effect. As a result, new concepts are conceived and new developments are made in the last decade, which are discussed and summarized in this book. This book will help define the discipline and encourage more students and scientists to work in this discipline. These efforts will eventually lead to formation of a full set of physical, chemical and materials principles for this new research field.
Granular forms of common materials such as metals and ceramics, sands and soils, porous energetic materials (explosives, reactive mixtures), and foams exhibit interesting behaviors due to their heterogeneity and critical length scale, typically commensurate with the grain or pore size. Under extreme conditions of impact, granular and porous materials display highly localized phenomena such as fracture, inelastic deformation, and the closure of voids, which in turn strongly influence the bulk response. Due to the complex nature of these interactions and the short time scales involved, computational methods have proven to be powerful tools to investigate these phenomena. Thus, the coupled use of experiment, theory, and simulation is critical to advancing our understanding of shock processes in initially porous and granular materials. This is a comprehensive volume on granular and porous materials for researchers working in the area of shock and impact physics. The book is divided into three sections, where the first presents the fundamentals of shock physics as it pertains to the equation of state, compaction, and strength properties of porous materials. Building on these fundamentals, the next section examines several applications where dynamic processes involving initially porous materials are prevalent, focusing on the areas of penetration, planetary impact, and reactive munitions. The final section provides a look at emerging areas in the field, where the expansion of experimental and computational capabilities are opening the door for new opportunities in the areas of advanced light sources, molecular dynamics modeling, and additively manufactured porous structures. By intermixing experiment, theory, and simulation throughout, this book serves as an excellent, up-to-date desk reference for those in the field of shock compression science of porous and granular materials.
This book summarizes many of the recent research accomplishments in the area of polyvinylchloride (PVC)-based blends and their preparation, characterization and applications. Various sub-topics are addressed, such as the state-of-the-art of PVC based blends, new challenges and opportunities, emphasis being given to the types and sizes of components/fillers and optimum compositions of PVC blends, their processing and structure-properties relationships, modification/compatibilization methods, and possible applications. PVC/thermoplastic based nano, micro and macro blends, PVC membranes, bio-based plasticizers and PVC blends with components from renewable resources are reported. The various chapters in this book are contributed by prominent researchers from industry, academia and government/private research laboratories across the globe. It covers an up-to-date record on the major findings and observations in the field of PVC-based blends.
This second part of the work on creep modeling offers readers essential guidance on practical computational simulation and analysis. Drawing on constitutive equations for creep in structural materials under multi-axial stress states, it applies these equations, which are developed in detail in part 1 of the work, to a diverse range of examples.
This book presents central problems in the design, research and maintenance of large-size mining machines for open pits, mobile earth-moving machinery, hydraulic hammers for mining and civil engineering, and screening processes for bulk materials. It brings together the insights of numerous respected academics to offer a thorough and multifaceted overview of the topic. The first few chapters of the book deal with specific problems that frequently occur in machinery for open-pit mining. They focus on the resilience of large-size mining machines, degradation of steels used for supporting structures, and modelling of large-size rotary joints, as well as the noise hazards in connection with degradation processes. The book then moves on to discuss problems arising in earth-moving machinery, such as new approaches to the assessment of operation and maintenance, dynamic loads in front-end loader booms, and synchronic transfer of power from the engine to the driven wheels. The book concludes by discussing hydraulic hammers for mining and civil engineering, and screening processes for bulk materials that combine a vibroscreen with additional feed elements. The book is primarily intended for undergraduate and graduate mechanical engineering courses, but will also be of interest to researchers and mechanical engineers.
This volume contains the proceedings of the XIX International Colloquium on Mechanical Fatigue of Metals, held at the Faculty of Engineering of the University of Porto, Portugal, 5-7 September 2018. This International Colloquium facilitated and encouraged the exchange of knowledge and experiences among the different communities involved in both basic and applied research in the field of the fatigue of metals, looking at the problem of fatigue exploring analytical and numerical simulative approaches. Fatigue damage represents one of the most important types of damage to which structural materials are subjected in normal industrial services that can finally result in a sudden and unexpected abrupt fracture. Since metal alloys are still today the most used materials in designing the majority of components and structures able to carry the highest service loads, the study of the different aspects of metals fatigue attracts permanent attention of scientists, engineers and designers.
This volume highlights the latest advances, innovations, and applications in the field of asphalt pavement technology, as presented by leading international researchers and engineers at the 5th International Symposium on Asphalt Pavements & Environment (ISAP 2019 APE Symposium), held in Padua, Italy on September 11-13, 2019. It covers a diverse range of topics concerning materials and technologies for asphalt pavements, designed for sustainability and environmental compatibility: sustainable pavement materials, marginal materials for asphalt pavements, pavement structures, testing methods and performance, maintenance and management methods, urban heat island mitigation, energy harvesting, and Life Cycle Assessment. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster multidisciplinary collaboration among different specialists.
This volume contains selected and reviewed manuscripts from the 2nd Regional Conference on Mechanical and Marine Engineering (ReMME 2018), 'Sustainable Through Engineering,' which was held from November 7 to 9, 2018, at the Ipoh, Perak, Malaysia. This conference was organized by the Center of Refrigeration and Air Conditioning (CARe) and Center of Marine Engineering (CTME) Politeknik Ungku Omar, Jalan Raja Musa Mahadi, 31400 Ipoh, Perak. It discusses the expertise, skills, and techniques needed for the development of energy and renewable energy system, new materials and biomaterials, and marine technology. It focuses on finite element analysis, computational fluids dynamics, programming and mathematical methods that are used for engineering simulations, and present many state-of-the-art applications. For example, modern joining technologies can be used to fabricate new compound or composite materials, even those formed from dissimilar component materials. These composite materials are often exposed to harsh environments, must deliver specific characteristics, and are primarily used in automotive and marine technologies, i.e., ships, amphibious vehicles, docks, offshore structures, and even robots. An energy efficient methods such cogeneration, thermal energy storage and solar desalination also being highlighted as sustainable engineering in this book chapter. The committee members can be listed as follows: Patron:Dr. Hj. Zairon Mustapha (Director). Advisor: Muhmmad Zubir Mohd Hanifah (Deputy Director Academic), Dr. Azhar Abdullah (Head of Innovation, Research & Commercialization). Chairman 1: Dr. Adzuieen Nordin. Chairman 2: Hairi Haizri Che Amat. Secretariat 1: Dr. Woo Tze Keong. Secretariat 2: Dr. Saw Chun Lin. Secretary: Mahani Mohd Zamberi, Maslinda Rahmad. Floor Manager: Dr. Adzuieen Nordin, Marzuki Mohammad Treasurer: Shahrul Nahar Omar Kamal. Webmaster: Mohamad Asyraf Othoman, Mohd Assidiq Che Ahmad, Mohd Hashim Abd. Razak. Proceeding & Editorial: Didi Asmara Salim, Khairil Ashraf Ahmad Maliki, Khirwizam Md Hkhir. Publicity: Nur Azrina Zainal Ariff, Norsheila Buyamin, Rawaida Muhammad, Noor Khairunnisa Kamaruddin. Reviewer: Zakiman Zali, Shahril Jalil. Technical Manager: Mohd Faisol Saad. Springer Publication Editorial: Dr. Saw Chun Lin, Dr. Woo Tze Keong, Didi Asmara Salim, Dr. Salvinder Singh Karam Singh. Protocol & Opening Ceremony: Mohd Rizan Abdul, Yeoh Poh See. Souvenir: Sharifah Zainhuda Syed Tajul Ariffin. Registration: Muhammad Zaki Zainal, Adi Firdaus Hat, Nor Ashimy Mohd Noor, Mohd Naim Awang. Proofread: Shamsul Banu Mohamed Siddik, Fairuz Liza Shuhaimi. Logistics: Mohd Zulhairi Zulkipli, Ahmad Fithri Hasyimie Hashim. Multimedia: Muhammad Redzuan Che Noordin, Mohd Redzuwan Danuri, Ahmad Syawal Yeop Aziz. Liason: Roseazah Ramli, Amrul Zani Mahadi. Sponsorship: Zuraini Gani, Hazril Hisham Hussin.
The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist. Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned. Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students.
This important review series began in 1954 at Academic Press. The latest volume deals with scanning tunneling microscopy, the nickel oxide electrode, radioactive labeling as an in situ method of characterization of solid/liquid interfaces, metallic glasses, reaction kinetics and mechanisms, and DC r
This book covers novel research results for process and techniques of materials characterization for a wide range of materials. The authors provide a comprehensive overview of the aspects of structural and chemical characterization of these materials. The articles contained in this book covers state of the art and experimental techniques commonly used in modern materials characterization. The book includes theoretical models and numerous illustrations of structural and chemical characterization properties. |
![]() ![]() You may like...
Computer Vision and Pattern Recognition…
Jun Zhou, Xiao Bai, …
Hardcover
R6,081
Discovery Miles 60 810
Mathematical Nonlinear Image Processing…
Edward R. Dougherty, Jaakko Astola
Hardcover
R5,736
Discovery Miles 57 360
Inside View of Slavery - or a Tour Among…
Charles Grandison Parsons
Paperback
R564
Discovery Miles 5 640
The Complete Works of Henry Wadsworth…
Henry Wadsworth Longfellow
Paperback
R600
Discovery Miles 6 000
Pattern and Data Analysis in Healthcare…
Vivek, Tiwari, Basant Tiwari, …
Hardcover
R5,889
Discovery Miles 58 890
|