![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time > Theoretical & mathematical astronomy
In 2004 a rock star, a TV astronomer and a young research astronomer sat down to write the story of the Universe in the order in which it happened, from its birth at the Big Bang 13.7 billion years ago, through to its ultimate demise in the infinitely far future. The aim of this book is to explain the Big Bang and everything that followed in a way that made sense, in the strict order in which events occurred, and without using maths, so it would be understandable to everyone, regardless of educational background. The original edition of Bang! was a bestseller, and a go-to for anyone wanting to understand the story of the origins and evolution of our Universe that did not duck the science. Since the first edition, thousands of planets have been discovered, the 'habitable zone' has expanded and a flotilla of new satellites has explored our own solar system, bringing back fresh images and new science. In this book all the latest findings about the evolution of stars and galaxies are included, and the current thinking about our ultimate origins. The latest ideas about Dark Matter and Dark Energy are explained, all illustrated with new images from the world's largest telescopes and space missions. This is the new, updated, popular guide to 'Life, the Universe, and Everything' - The Complete History of the Universe.
This thesis presents a systematic study of the orbital evolution, gravitational wave radiation, and merger remnant of the black hole-neutron star binary merger in full general relativity for the first time. Numerical-relativity simulations are performed using an adaptive mesh refinement code, SimulAtor for Compact objects in Relativistic Astrophysics (SACRA), which adopts a wide variety of zero-temperature equations of state for the neutron star matter. Gravitational waves provide us with quantitative information on the neutron star compactness and equation of state via the cutoff frequency in the spectra, if tidal disruption of the neutron star occurs before the binary merges. The cutoff frequency will be observed by next-generation laser interferometric ground-based gravitational wave detectors, such as Advanced LIGO, Advanced VIRGO, and KAGRA. The author has also determined that the mass of remnant disks are sufficient for the remnant black hole accretion disk to become a progenitor of short-hard gamma ray bursts accompanied by tidal disruptions and suggests that overspinning black holes may not be formed after the merger of even an extremely spinning black hole and an irrotational neutron star.
Large area sky surveys are now a reality in the radio, IR, optical and X-ray passbands. In the next few years, new surveys using optical, UV and IR mosaic cameras with high throughput digital detectors will expand the dynamic range and accuracy of photometry and astrometry of objects over a significant fraction of the entire sky. Parallel X-ray and radio surveys over the same areas will produce astronomical image and spectroscopic databases of unprecedented size and quality. The combined data sets will provide significant new constraints on star formation, stellar dynamics, Galactic structure, the evolution of galaxies and large scale structure, as well as new opportunities to identify rare objects in the solar system and the Galaxy. Large area surveys have formidable data acquisition, processing, archiving, and data distribution demands and this meeting provided a forum for sharing experiences amongst workers specializing in different wavebands as well as discussing how multiband observations can reveal fundamental relationships in our understanding of the Universe.
Essential Relativistic Celestial Mechanics presents a systematic exposition of the essential questions of relativistic celestial mechanics and their relation to relativistic astrometry. The book focuses on the comparison of calculated and measurable quantities that is of paramount importance in using general relativity as a necessary framework in the discussion of high-precision observations and for the construction of accurate dynamical ephemerides. It discusses the results of the general relativistic theory of motion of celestial bodies and describes the relativistic theory of astronomical reference frames, time scales, and the reduction of observations.
The essays in this book look at way in which the fundaments of physics might need to be changed in order to make progress towards a unified theory. They are based on the prize-winning essays submitted to the FQXi essay competition "Which of Our Basic Physical Assumptions Are Wrong?", which drew over 270 entries. As Nobel Laureate physicist Philip W. Anderson realized, the key to understanding nature's reality is not anything "magical", but the right attitude, "the focus on asking the right questions, the willingness to try (and to discard) unconventional answers, the sensitive ear for phoniness, self-deception, bombast, and conventional but unproven assumptions." The authors of the eighteen prize-winning essays have, where necessary, adapted their essays for the present volume so as to (a) incorporate the community feedback generated in the online discussion of the essays, (b) add new material that has come to light since their completion and (c) to ensure accessibility to a broad audience of readers with a basic grounding in physics. The Foundational Questions Institute, FQXi, catalyzes, supports, and disseminates research on questions at the foundations of physics and cosmology, particularly new frontiers and innovative ideas integral to a deep understanding of reality, but unlikely to be supported by conventional funding sources.
It is not possible to understand the present or future climate unless scientists can account for the enormous and rapid cycles of glaciation that have taken place over the last million years, and which are expected to continue into the future. A great deal has happened in the theory of the ice ages over the last decade, and it is now widley accepted that ice ages are driven by changes in the Earth's orbit. The study of ice ages is very inter-disciplinary, covering geology, physics, glaciology, oceanography, atmospheric science, planetary orbit calculations astrophysics and statistics.
To study astronomy is to consider the most wondrous phenomena on the grandest of scales - the universe and all it contains. Beginning with our earliest explorations of the night sky, William Waller takes us on an enthralling journey through the Milky Way and far, far beyond. He combines science and history to show how our understanding of everything from black holes to the structure of the universe has evolved over time, illuminating past discoveries and offering contemporary insights into the cosmic histories of stars, planets and galaxies. Whether object of study or curiosity, the universe - and all it contains - is tantalisingly introduced here.
This textbook gives an introduction to fluid dynamics based on flows for which analytical solutions exist, like individual vortices, vortex streets, vortex sheets, accretions disks, wakes, jets, cavities, shallow water waves, bores, tides, linear and non-linear free-surface waves, capillary waves, internal gravity waves and shocks. Advanced mathematical techniques ("calculus") are introduced and applied to obtain these solutions, mostly from complex function theory (Schwarz-Christoffel theorem and Wiener-Hopf technique), exterior calculus, singularity theory, asymptotic analysis, the theory of linear and nonlinear integral equations and the theory of characteristics. Many of the derivations, so far contained only in research journals, are made available here to a wider public.
This book describes numerical simulations of collisions between asteroids, based on a unique numerical code developed by the author. The code accurately solves the elastic dynamic equations and describes the effects of fracture and friction, which makes it possible to investigate the shapes of impact outcomes produced by asteroid collisions and subsequent gravitational accumulation of fragments. The author parallelizes the code with high parallelization efficiency; accordingly, it can be used to conduct high-resolution simulations with the aid of supercomputers and clarify the shapes of small remnants produced through the catastrophic destruction of asteroids. The author demonstrates that flat asteroids can only be produced by impacts involving objects with similar mass and low velocity, which suggests that the flat asteroids in our solar system were created in the planet formation era and have kept their shapes until today. The author also shows that asteroid collisions under certain conditions can produce the extremely elongated shape of an interstellar minor body, 1I/'Oumuamua. In brief, the book offers a comprehensive investigation of asteroid impacts and shapes, making it a uniquely valuable resource.
The aim of the inaugural meeting of the Sant Cugat Forum on
Astrophysics was to address, in a global context, the current
understanding of and challenges in high-energy emissions from
isolated and non-isolated neutron stars, and to confront the
theoretical picture with observations of both the Fermi satellite
and the currently operating ground-based Cherenkov telescopes.
Participants have also discussed the prospects for possible
observations with planned instruments across the multi-wavelength
spectrum (e.g. SKA, LOFAR, E-VLT, IXO, CTA) and how they will
impact our theoretical understanding of these systems.
Ground- or space-based telescopes are becoming increasingly more complex and construction budgets are typically in the billion dollar range. Facing costs of this magnitude, availability of engineering tools for prediction of performance and design optimization is imperative. Establishment of simulation models combining different technical disciplines such as Structural Dynamics, Control Engineering, Optics and Thermal Engineering is indispensable. Such models are normally called Integrated Models because they involve many different disciplines. The models will play an increasingly larger role for design of future interdisciplinary optical systems in space or on ground. The book concentrates on integrated modeling of optical and radio telescopes but the techniques presented will be applicable to a large variety of systems. Hence, the book will be of interest to optical and radio telescope designers, designers of spacecrafts that include optical systems, and to designers of various complex defense systems. The book may also find use as a textbook for undergraduate and graduate courses within the field. "Adaptive Optics" is an exciting and relatively new field, originally dedicated to correction for blurring when imaging through the atmosphere. Although this objective is still of high importance, the concept of Adaptive Optics has recently evolved further. Today, the objective is not only to correct for atmospheric turbulence effects but also for a range of static and dynamical telescope aberrations. The notion of adaptive optics has expanded to the field of "Wavefront Control", correcting for a variety of system aberrations. Wavefront control systems maintain form and position of optical elements with high precision under static and dynamical load. In many ways, such systems replace the steel structures of traditional optical systems, thereby providing much lighter systems with a performance not possible before. Integrated Modeling is the foremost tool for studies of Wavefront Control for telescopes and complex optics and is therefore now of high importance. Springer has recently published two books on telescopes, "Reflecting Telescope Optics" by R. Wilson, and "The Design and Construction of Large Optical Telescopes" by P. Bely. Noting that a new (and expensive) generation of Extremely Large Telescopes with apertures in the 30-100 m range is on the way, the present book on integrated modeling is a good match to the existing books and an appropriate specialization and continuation of some subjects dealt with in those books.
Much of what is known about the universe came from the study of celestial shadows. This book looks in detail at the way eclipses and other celestial shadows have given us amazing insights into the nature of the objects in our solar system and how they are even helping us discover and analyze planets that orbit stars other than our Sun. A variety of eclipses, transits, and occultations of the mooons of Jupiter and Saturn, Pluto and its satellite Charon, asteroids and stars have helped astronomers to work out their dimensions, structures, and shapes - even the existence of atmospheres and structures of exoplanets. Long before Columbus set out to reach the Far East by sailing West, the curved shadow of the Earth on the Moon during a lunar eclipse revealed that we inhabit a round world, a globe. More recently, comparisons of the sunlit and Earthlit parts of the Moon have been used to determine changes in the Earth's brightness as a way of monitoring possible effects in cloud coverage which may be related to global warming. Shadows were used by the Greek mathematician Eratosthenes to work out the first estimate of the circumference of the Earth, by Galileo to measure the heights of the lunar mountains and by eighteenth century astronomers to determine the scale of the Solar System itself. Some of the rarest and most wonderful shadows of all are those cast onto Earth by the lovely "Evening Star" Venus as it goes between the Earth and the Sun. These majestic transits of Venus occur at most two in a century; after the 2012 transit, there is not a chance to observe this phenomenon until 2117, while the more common sweep of a total solar eclipse creates one of the most dramatic and awe-inspiring events of nature. Though it may have once been a source of consternation or dread, solar eclipses now lead thousands of amateur astronomers and "eclipse-chasers" to travel the globe in order to experience the dramatic view under "totality." These phenomena are among the most spectacular available to observers and are given their full due in Westfall and Sheehan's comprehensive study.
This interesting book provides the physical and mathematical background for a theory describing the universe as a quantum superfluid, and how dark energy and dark matter arise. Presenting a novel theory spanning many different fields in physics, the key concepts in each field are introduced.The reader is only expected to know the rudiments of condensed matter physics, quantum field theory and general relativity to explore this fascinating new model of dark matter and dark energy as facets of a cosmic superfluid.
This translation of"A Brief History of Radio Astronomy in the USSR"makes descriptions of the antennas and instrumentation used in the USSR, the astronomical discoveries, as well as interesting personal backgrounds of many of the early key players in Soviet radio astronomy available in the English language for the first time. This book is a collection of memoirs recounting an interesting but largely still dark era of Soviet astronomy. The arrangement of the essays is determined primarily by the time when radio astronomy studies began at the institutions involved. These include the Lebedev Physical Institute (FIAN), Gorkii State University and the affiliated Physical-Technical Institute (GIFTI), Moscow State University Sternberg Astronomical institute (GAISH) and Space Research Institute (IKI), the Department of Radio Astronomy of the Main Astronomical Observatory in Pulkovo (GAO), Special Astrophysical Observatory (SAO), Byurakan Astrophysical Observatory (BAO), Crimean Astrophysical Observatory, Academy of Sciences of the Ukraine (SSR), Institute of Radio Physics and Electronics of the USSR Academy of Sciences (IRE), Institute of Terrestrial Magnetism, the Ionosphere and Radio-Wave Propagation Institute (IZMIRAN), Siberian Institute of Terrestrial Magnetism, the Ionosphere and Radio-Wave Propagation (SibIZMIRAN), the Radio Astrophysical Observatory of the Latvian Academy of Sciences and Leningrad State University. "A Brief History of Radio Astronomy in the USSR"is a fascinating source of information on a past era of scientific culture and fields of research including the Soviet SETI activities. Anyone interested in the recent history of science will enjoy reading this volume. "
In this collection Gingerich focuses on the transformation of astronomy from Ptolemy's geocentrisim to Kepler's remoulding of Copernican cosmology. Several of Gingerich's favourite themes are illuminated: the importance of historical context in the study of science, the careful examination of work habits as a key to understanding, and the role of creativity and artistry in science. The work includes Dr Gingerich's well-known and influential essay on crisis versus aesthetic in the Copernican revolution, a look at Newton's "Principia" as a work of art, and one of Gingerich's most popular pieces, "The Computer versus Kepler".
Analyses of photometric time series obtained from the MOST, CoRoT and Kepler space missions were presented at the 20th conference on Stellar Pulsations (Granada, September 2011). These results are leading to a re-appraisal of our views on stellar pulsation in some stars and posing some new and unexpected challenges. The very important and exciting role played by innovative ground-based observational techniques, such as interferometric measurements of giant pulsating stars and high-resolution spectroscopy in the near infrared, is also discussed. These Proceedings are distinguished by the format of the conference, which brings together a variety of related but different topics not found in other meetings of this nature.
"Astrochemistry and Astrobiology" is the debut volume in the new series "Physical Chemistry in Action." Aimed at both the novice and experienced researcher, this volume outlines the physico-chemical principles which underpin our attempts to understand astrochemistry and predict astrobiology. An introductory chapter includes fundamental aspects of physical chemistry required for understanding the field. Eight further chapters address specific topics, encompassing basic theory and models, up-to-date research and an outlook on future work. The last chapter examines each of the topics again but addressed from a different angle. Written and edited by international experts, this text is accessible for those entering the field of astrochemistry and astrobiology, while it still remains interesting for more experienced researchers.
This volume presents the current knowledge of magnetic fields in diffuse astrophysical media. Starting with an overview of 21st century instrumentation to observe astrophysical magnetic fields, the chapters cover observational techniques, origin of magnetic fields, magnetic turbulence, basic processes in magnetized fluids, the role of magnetic fields for cosmic rays, in the interstellar medium and for star formation. Written by a group of leading experts the book represents an excellent overview of the field. Nonspecialists will find sufficient background to enter the field and be able to appreciate the state of the art.
This volume contains the updated and expanded lecture notes of the 37th Saas-Fee Advanced Course organised by the Swiss Society for Astrophysics and Astronomy. It offers the most comprehensive and up to date review of one of the hottest research topics in astrophysics - how our Milky Way galaxy formed. Joss Bland-Hawthorn & Ken Freeman lectured on Near Field Cosmology - The Origin of the Galaxy and the Local Group. Francesca Matteucci's chapter is on Chemical evolution of the Milky Way and its Satellites. As designed by the SSAA, books in this series - and this one too - are targeted at graduate and PhD students and young researchers in astronomy, astrophysics and cosmology. Lecturers and researchers entering the field will also benefit from the book.
The Finnish mathematician and astronomer Anders Johan Lexell (1740-1784) was a long-time close collaborator as well as the academic successor of Leonhard Euler at the Imperial Academy of Sciences in Saint Petersburg. Lexell was initially invited by Euler from his native town of Abo (Turku) in Finland to Saint Petersburg to assist in the mathematical processing of the astronomical data of the forthcoming transit of Venus of 1769. A few years later he became an ordinary member of the Academy. This is the first-ever full-length biography devoted to Lexell and his prolific scientific output. His rich correspondence especially from his grand tour to Germany, France and England reveals him as a lucid observer of the intellectual landscape of enlightened Europe. In the skies, a comet, a minor planet and a crater on the Moon named after Lexell also perpetuate his memory.
A valuable reference for students and professionals in the field of deep space navigation Drawing on fundamental principles and practices developed during decades of deep space exploration at the California Institute of Technology’s Jet Propulsion Laboratory (JPL), this book documents the formation of program Regres of JPL’s Orbit Determination Program (ODP). Program Regres calculates the computed values of observed quantities (e.g., Doppler and range observables) obtained at the tracking stations of the Deep Space Network, and also calculates media corrections for the computed values of the observable and partial derivatives of the computed values of the observables with respect to the solve-for-parameter vector-q. The ODP or any other program which uses its formulation can be used to navigate a spacecraft anywhere in the solar system. A publication of the JPL Deep Space Communications and Navigation System Center of Excellence (DESCANSO), Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation is an invaluable resource for graduate students of celestial mechanics or astrodynamics because it:
The Deep Space Communications and Navigation Series is authored by scientists and engineers with extensive experience in astronautics, communications, and related fields. It lays the foundation for innovation in the areas of deep space navigation and communications by conveying state-of-the-art knowledge in key technologies.
This volume reviews conceptual conflicts at the foundations of physics now and in the past century. The focus is on the conditions and consequences of Einstein's pathbreaking achievements that sealed the decline of the classical notions of space, time, radiation, and matter, and resulted in the theory of relativity. Particular attention is paid to the implications of conceptual conflicts for scientific views of the world at large, thus providing the basis for a comparison of the demise of the mechanical worldview at the turn of the 20th century with the challenges presented by cosmology at the turn of the 21st century. Throughout the work, Einstein's contributions are not seen in isolation but instead set into the wider intellectual context of dealing with the problem of gravitation in the twilight of classical physics; the investigation of the historical development is carried out with a number of epistemological questions in mind, concerning, in particular, the transformation process of knowledge associated with the changing worldviews of physics.
A thorough introduction to modern ideas on cosmology and on the
physical basis of the general theory of relativity, An Introduction
to the Science of Cosmology explores various theories and ideas in
big bang cosmology, providing insight into current problems.
Assuming no previous knowledge of astronomy or cosmology, this book
takes you beyond introductory texts to the point where you are able
to read and appreciate the scientific literature, which is broadly
referenced in the book. The authors present the standard big bang
theory of the universe and provide an introduction to current
inflationary cosmology, emphasizing the underlying physics without
excessive technical detail.
The papers in this volume cover a large range of questions concerning the dynamics of objects of the solar system, from theoretical Hamiltonian mechanics to the study of the dynamical behaviour of specific objects, with a strong emphasis on the detection, causes and effects of chaotic behaviour. Several papers describe contributions in two topics which are considered as a major breakthrough in numerical dynamics: symplectic methods of numerical integration of Hamiltonian systems, and methods for spectral analysis of numerically computed orbits leading to refined tools for the detection and evaluation of chaos. The dynamics of the asteroid belt and other small objects, a fast-moving topic with important implications for the origin and evolution of the Solar System, is also extensively covered. |
You may like...
Formal Verification - An Essential…
Erik Seligman, Tom Schubert, …
Paperback
R2,301
Discovery Miles 23 010
Soft Computing in Industrial Electronics
Seppo J. Ovaska, Les M. Sztandera
Hardcover
R4,208
Discovery Miles 42 080
Exploring Zynq MPSoC - With PYNQ and…
Crockett H Louise, Northcote David, …
Hardcover
R1,884
Discovery Miles 18 840
|