![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time > Theoretical & mathematical astronomy
The pilot boat just moved away and'its lights are already fading towards the coast of Northeastern Queensland over which Saturn is going to set. There is still quite some time to go before dawn. The big ship has now regained her cruise speed following its roughly northwesterly route in the South Coral Sea along the chain of nearby reefs. Few people are around at this time, except a dozen early birds sharing some 'shipshaping' exercise on the top deck and taking advantage of the relative coolness of the night. On my way down to the stateroom, I cannot but stop once more in front of that elegant composition by British artist Brigid Collins (1963-) hanging in the monumental staircase between Decks 7 and 8. That piece 2 of art, a 1.8x 1.8m oil on canvas plus collage entitled Berinl in honour of the Danish explorer, gathers together many navigation-related themes of the time: Suns, Moons, planets, sky maps, astrolabes, small telescopes, as well as drawings, diagrams and charts of all kinds. It is somehow a digest of how astronomical information was then collected, made available, and used.
The articles included in this Volume represent a broad and
highly qualified view on the present state of general relativity,
quantum gravity, and their cosmological and astrophysical
implications. As such, it may serve as a valuable source of
knowledge and inspiration for experts in these fields, as well as
an advanced source of information for young researchers.
This textbook on the nature of space and time explains the new theory of Space Dynamics, which describes the dynamics of gravity as the evolution of conformal 3-dimensional geometry. Shape Dynamics is equivalent to Einstein's General Relativity in those situations in which the latter has been tested experimentally, but the theory is based on different first principles. It differs from General Relativity in certain extreme conditions. Shape Dynamics allows us to describe situations in which the spacetime picture is no longer adequate, such as in the presence of singularities, when the idealization of infinitesimal rods measuring scales and infinitesimal clocks measuring proper time fails. This tutorial book contains both a quick introduction for readers curious about Shape Dynamics, and a detailed walk-through of the historical and conceptual motivations for the theory, its logical development from first principles and a description of its present status. It includes an explanation of the origin of the theory, starting from problems posed first by Newton more than 300 years ago. The book will interest scientists from a large community including all foundational fields of physics, from quantum gravity to cosmology and quantum foundations, as well as researchers interested in foundations. The tutorial is sufficiently self-contained for students with some basic background in Lagrangian/Hamiltonian mechanics and General Relativity.
This book offers a unique review of how astronomical information handling (in the broad sense) evolved in the course of the 20th century, and especially during its second half. This volume is a natural complement to the book Information handling in astronomy published in the same series. The scope of these two volumes includes not only dealing with professional astronomical data from the collecting instruments (ground-based and space-borne) to the users/researchers, but also publishing, education and public outreach. In short, the information flow in astronomy is thus illustrated from sources (cosmic objects) to end (mankind's knowledge). The experts contributing to this book have done their best to write in a way understandable to readers not necessarily hyperspecialized in astronomy while providing specific detailed information, as well as plenty of pointers and bibliographic elements. Especially enlightening are some lessons learned' sections.
This book offers an essential compendium of astronomical high-resolution techniques. Recent years have seen considerable developments in such techniques, which are critical to advances in many areas of astronomy. As reflected in the book, these techniques can be divided into direct methods, interferometry, and reconstruction methods, and can be applied to a huge variety of astrophysical systems, ranging from planets, single stars and binaries to active galactic nuclei, providing angular resolution in the micro- to tens of milliarcsecond scales. Written by experts in their fields, the chapters cover adaptive optics, aperture masking imaging, spectra disentangling, interferometry, lucky imaging, Roche tomography, imaging with interferometry, interferometry of AGN, AGN reverberation mapping, Doppler- and magnetic imaging of stellar surfaces, Doppler tomography, eclipse mapping, Stokes imaging, and stellar tomography. This book is intended to enable a next generation of astronomers to apply high-resolution techniques. It informs readers on how to achieve the best angular resolution in the visible and near-infrared regimes from diffraction-limited to micro-arcsecond scales.
Time is considered as an independent entity which cannot be reduced to the concept of matter, space or field. The point of discussion is the "time flow" conception of N A Kozyrev (1908-1983), an outstanding Russian astronomer and natural scientist. In addition to a review of the experimental studies of "the active properties of time", by both Kozyrev and modern scientists, the reader will find different interpretations of Kozyrev's views and some developments of his ideas in the fields of geophysics, astrophysics, general relativity and theoretical mechanics.
It is only since recent years that the importance of the effects of outdoor lighting on the night-time environment and on the physical and mental health of humans is recognized on a wider scale. The related issue of light pollution is a particularly complex one, with potential conflicts of interest between the utilities, environmentalists, astronomers, the lighting industry and various government departments. Energy politics are always a sensitive issue, and light pollution is no exception to this rule. The effects of light pollution on flora, fauna -including humans and their widely varying night-time activities- are often subtle and need extensive field studies to be quantified in a sensible manner. The present conference, initiated by Commission 50 of the International Astronomical Union, is an attempt to bring together the astronomical community, the lighting industry, end-users, the utilities, and public authorities for a discussion and an exchange of ideas and information that will create goodwill among these groups and will thus contribute to making the global efforts to reduce pollution more efficient and effective. Radio frequency pollution was also discussed in the context of
radio astronomy and its efforts to create radio-quiet zones in
collaboration with the government authorities that allocate
frequency bands to the various users -mainly the telecommunications
industry- and to protect the major planned and present radio
observatories of the world. Some of the highlights were: Related topics in the book are light pollution education, aircraft contrails, space advertising (with an added document provided by the relevant UN commission), and an experiment on involving the population of an entire country in measuring sky brightness, by using the internet and the media. The text is aimed at professionals from a wide range of disciplines related to lighting and its effects on the night-time environment in the broadest sense of the word. Lay persons interested in this emerging multi-disciplinary field can also find much of interest in this book.
This volume is written by leading scientists in the field, who review the current state of our knowledge of tidal streams in the Milky Way, the Andromeda galaxy, and in other nearby galaxies. The cosmological origins of dwarf galaxies and the physical processes by which they are tidally disrupted into streams and incorporated into galaxy halos are discussed. The techniques that have been used to identify tidal streams are presented and will be useful to researchers who would like to find substructures in the next generation of optical sky surveys, including Pan-STARRS and LSST. The methods that are currently under development to constrain both large scale distribution of dark matter in the Milky Way and the (small scale) lumpiness of the dark matter distribution are also explained. The authors also provide motivation for future spectroscopic surveys of Milky Way halo stars, which will aid both in the identification of tidal streams and the constraint of dark matter properties. This volume is aimed at graduate students who are beginning this field of research, but is also a resource for researchers who study tidal streams and related fields. In addition to presenting the physical processes by which tidal streams are created, it also reviews the current state of the observations and the progress towards utilizing these observations to constrain the distribution of dark matter in the Milky Way. The book will introduce anyone with a background in astrophysics to the field of tidal streams.
This book-unique in the literature-provides readers with the mathematical background needed to design many of the optical combinations that are used in astronomical telescopes and cameras. The results presented in the work were obtained by using a different approach to third-order aberration theory as well as the extensive use of the software package Mathematica (R). Replete with workout examples and exercises, Geometric Optics is an excellent reference for advanced graduate students, researchers, and practitioners in applied mathematics, engineering, astronomy, and astronomical optics. The work may be used as a supplementary textbook for graduate-level courses in astronomical optics, optical design, optical engineering, programming with Mathematica, or geometric optics.
The book's principal aim is to clarify fundamental concepts, decipher mathematical structures used to model space-time and relativistic worlds, and to disclose their physical meaning. After each chapter, philosophical implications of the presented material are commented upon.Both special and general theories of relativity are presented in the book with the stress on their global aspects. Although global mathematical methods are extensively used throughout the book, the definitions of new concepts, short comments and examples make reading smooth without the need to consult other textbooks or review papers.
A few years ago, a real break-through happened in observational astronomy: the un derstanding of the effect of atmospheric turbulence on the structure of stellar images, and of ways to overcome this dramatic degradation. This opened a route to diffraction-limited observations with large telescopes in the optical domain. Soon, the first applications of this new technique led to some outstanding astrophysical results, both at visible and infrared wavelengths. Yet, the potential of interferometric observations is not fully foreseeable as the first long-baseline arrays of large optical telescopes are being built or cOIIllnissioned right now. In this respect a comparison with the evolution of radio-astronomy is tempting. From a situation where, in spite of the construction of giant antennas, low angular resolution was prevailing, the introduction of long baseline and very long baseline interferometry and the rapid mastering of sophisticated image reconstruction techniques, have brought on a nearly routine basis high dynamic range images with milliarcseconds resolution. This, of course, has completely changed our views of the radio sky."
Relativistic cosmology has in recent years become one of the most exciting and active branches of current research. In conference after conference the view is expressed that cosmology today is where particle physics was forty years ago, with major discoveries just waiting to happen. Also gravitational wave detectors, presently under construction or in the testing phase, promise to open up an entirely novel field of physics. It is to take into account such recent developments, as well as to improve the basic text, that this second edition has been undertaken. The most affected is the last part on cosmology, but there are smaller additions, corrections, and additional exercises throughout. The books basic purpose is to make relativity come alive conceptually. Hence the emphasis on the foundations and the logical subtleties rather than on the mathematics or the detailed experiments per se. Aided by some 300 exercises, the book promotes a deep understanding and the confidence to tackle any fundamental relativistic problem. To request a copy of the Solutions Manual, visit: http: //global.oup.com/uk/academic/physics/admin/solutions
IAU Colloquium 165, Dynamics and Astrometry of Natural and Artificial Celestial Bodies, was held in Poznan, Poland, in July 1996, bringing together over 200 scientists from 27 countries who discussed their work in 179 oral and poster presentations. The present volume contains 83 of the papers presented at the meeting. The meeting brought together specialists from diverse fields who focused on the very close collaboration between dynamics and astrometry, where one discipline contributes to the progress of the other. The oral sessions were organized into general categories pertaining to: solar system dynamics; new observational techniques, catalogues, and astrometry; dynamics and observational problems of artificial satellites and space debris; rotation of solar system objects; reference systems and astronomical standards; new mathematical techniques; and three all-day poster sessions. This volume is divided into seven parts, comprising 83 contributions, a list of participants and an index.
It is now a well-established tradition that every four years, at the end of winter, a group of 'celestial mechanicians' from all over the world gather in the Austrian Alps at the invitation of R. Dvorak. This time the colloquium was held at Badhofgastein from March 19 to March 25, 2000 and was devoted to the 'New Developments in the Dynamics of Planetary Systems'. The papers covered a large range of questions of current interest: t- oretical questions (resonances, KAM theory, transport, ... ) and questions about numerical tools (synthetic elements, indicators of chaos, ... ) were particularly well represented; of course planetary theories and Near Earth Objects were also quite popular. Three special lectures were delivered in honor of deceased colleagues whom, to our dismay, we will no longer meet at the 'Austrian Colloquia'. W. Jefferys delivered the Heinrich Eichhorn lecture on 'Statistics for the Twenty-first Century Astrometry', a topic on which Heinrich Eichhorn was a specialist. A. Roy delivered a lecture honoring Victor Szehebely on 'Lifting the Darkness: Science in the Third Millenium', in which in wove anecdotes and remembrances of Victor which moved the audience very much. A. Lemaitre spoke in honor of Michele Moons on 'Mech anism of Capture in External Resonance'. The end of her talk was devoted to a short and moving biography of Michele illustrated by many slides."
These are the proceedings of a meeting in honour of Massimo Capaccioli at the occasion of his 70th birthday. The conference aimed at summarizing the results from the main current and past digital sky survey projects and at discussing how these can be used to inspire ongoing projects and better plan the future ones. Over the last decades, digital sky surveys performed with dedicated telescopes and finely-tuned wide-field cameras, have revolutionized astronomy. They have become the main tool to investigate the nearby and far away universe, thus providing new insights in the understanding of the galaxy structure and assembly across time, the dark components of the universe, as well as the history of our own galaxy. They have also opened the time domain leading to a new understanding of the transient phenomena in the universe. By providing public access to top quality data, digital surveys have also changed the everyday practice of astronomers who have become less dependent on direct access to large observing facilities. The full scientific exploitation of these surveys has also triggered significant advances in both space and ground based technology and in the field of multi-object spectroscopy. The various sections of this book are devoted to different relevant aspects of astrophysics in the era of digital sky surveys and include both review and shorter, more focused contributions.
The Swiss Society for Astrophysics and Astronomy organizes each year in the late winter or early spring an advanced course. The format of the school is always iden tical: three leading lecturers are invited to cover the subject in nine or ten lectures each and to deliver a written version of their lecture notes. Lectures are held in the morning and late afternoon, thus leaving ample time for discussion and skiing. These arrangements prove very convivial and lead to an excellent atmosphere in which to learn exciting new subjects and establish contacts with colleagues. A wide variety of people attend the school, including many young students, mostly from Europe, and some experienced researchers. The 20th Advanced Course of the Swiss Society for Astrophysics and Astronomy took place in Les Diablerets from 1 to 6 April 1990. It was devoted to observational and theoretical aspects of active galactic nuclei. The previous advanced courses of the Swiss Society for Astrophysics and Astronomy have regularly taken place in Saas-Fee, a small resort in the Swiss Alps, hence the name "Saas-Fee" used to de scribe the courses and lecture notes. In the last three years, however, the course was organized in Leysin and in Les Diablerets, both also situated in the Swiss Alps."
J 2 J. MICHAEL SHl: LL, HARLEY A. THRO: \SOX, JR., A: '>D S. ALAN STER: \3 I University of Colorado, Dept. of Astrophysical. Planetary, &. Atmospheric Sciences 2 University of Wyoming and KASA Headquarters, Code SR 3 Southwest Research Institute, Boulder Office On May 15-17. 1995, three Rocky Motultain research institutions hosted a confererJce to dis cuss the scientific basis, teclmological options, and programmatic implications of a large-scale effort to find and study Earth-like planets outside the Solar System. Our workshop attracted scientists, erJgineers, space agency administrators, and the public media to discuss and debate the most promising teclmological options and opportunities. Major programs and proposals to search for and study exo-planets were preserJted and discussed. In addition, our meeting - incided .with NASA's "roadmap" study for the Exploration of Neighboring Planetary Systems ( "'\PS). Our meeting was the first international confererJce on this subject, affording an op portunity for several members of this study to participate in the debates over new technologies. Our meeting proyed to be timely. Shortly thereafter, in late 199.5 and early 1996, two groups of astronomers annotulced the first discoveries of planetary companions to nearby stars. using high-precision radial velocity measuremerJts to detect the gravitational reflex motion of the star. The first three detections include a Jupiter-mass companion to the solar-like star. 51 Pegasi, and two remarkable objects of mass at least 2. 3 and 6."
The existence of blue straggler stars, which appear younger, hotter, and more massive than their siblings, is at odds with a simple picture of stellar evolution. Such stars should have exhausted their nuclear fuel and evolved long ago to become cooling white dwarfs. They are found to exist in globular clusters, open clusters, dwarf spheroidal galaxies of the Local Group, OB associations and as field stars. This book summarises the many advances in observational and theoretical work dedicated to blue straggler stars. Carefully edited extended contributions by well-known experts in the field cover all the relevant aspects of blue straggler stars research: Observations of blue straggler stars in their various environments; Binary stars and formation channels; Dynamics of globular clusters; Interpretation of observational data and comparison with models. The book also offers an introductory chapter on stellar evolution written by the editors of the book.
This book is written in a pedagogical style intelligible for graduate students. It reviews recent progress in black-hole and wormhole theory and in mathematical cosmology within the framework of Einstein's field equations and beyond, including quantum effects. This collection of essays, written by leading scientists of long standing reputation, should become an indispensable source for future research.
The History of Astronomy in the Orient has been vigorously researched in the last several decades. We may recall here the publications of Joseph Needham's monumental volumes on Science and Civilisation in China, one volume of which is devoted to Chinese Astron- omy, S. Nakayama's A History of Japanese Astronomy (Tokyo, 1969), and the School of Edward Kennedy's writings on Islamic Astronomy,1 which particularly culminated in the studies of the Critique of Ptolemaic Astronomy by the Islamic astronomers belong- ing to Na~lruddin rusI's School, established at Maragha Observatory during the l3-l4th 2 centuries. In this backdrop of the emphasis on astronomy in the Orient, the first IAU Colloquium (No.9 1 ) on "History of Oriental Astronomy" was organised during the IAU General Assem- bly, held in New Delhi, Nov. 13-16, 1985. The Proceedings ofthe Colloquium were then 3 published. The second effort by this Commission was to organise another International Colloquium on Interaction of European and Asian Astronomy, held in Vienna in Sept. 4 1990. Unfortunately its Proceedings could not be published. Noteworthy is that the Far East or the East Asia did not lag behind in this endeavour.
This book introduces the Statistical Drake Equation where, from a simple product of seven positive numbers, the Drake Equation is turned into the product of seven positive random variables. The mathematical consequences of this transformation are demonstrated and it is proven that the new random variable N for the number of communicating civilizations in the Galaxy must follow the lognormal probability distribution when the number of factors in the Drake equation is allowed to increase at will. Mathematical SETI also studies the proposed FOCAL (Fast Outgoing Cyclopean Astronomical Lens) space mission to the nearest Sun Focal Sphere at 550 AU and describes its consequences for future interstellar precursor missions and truly interstellar missions. In addition the author shows how SETI signal processing may be dramatically improved by use of the Karhunen-Loeve Transform (KLT) rather than Fast Fourier Transform (FFT). Finally, he describes the efforts made to persuade the United Nations to make the central part of the Moon Far Side a UN-protected zone, in order to preserve the unique radio-noise-free environment for future scientific use.
Interest world-wide in the provision of new observational astro nomical facilities in the form of ground-based optical telescopes of large aperture has never been higher than exists at present. The benefits to be gained from increased aperture size, however, are only utilised effectively if efficient instrumentation is also available. There have been significant improvements recently in this area, part icularly in detector technology and data handling as well as in optical design, so that systems which are currently being developed have the capability of being vastly more powerful in terms of the efficient use of photons than those which existed only 5 years ago. The rationale for the decision by Commission 9 of the International Astronomical Union to hold IAU Colloquium 67, therefore, was to obtain reports on these developments with the emphasis placed upon overall efficiency of the complete observational system - from telescope aperture right through to detector output. A fitting venue for the meeting was the site of the 6 metre BTA (Bolshoi Azimuth Telescope) at Zelenchukskaya in the Caucasus mount ains, USSR. The BTA is operated by the Special Astrophysical Observatory located at Nizhnij Arkhyz, a few kilometres from the telescope itself."
The work presented in this book is a major step towards understanding and eventually suppressing background in the direct search for dark matter particles scattering off germanium detectors. Although the flux of cosmic muons is reduced by many orders of magnitude in underground laboratories, the remaining energetic muons induce neutrons through various processes, neutrons that can potentially mimic a dark matter signal. This thesis describes the measurement of muon-induced neutrons over more than 3 years in the Modane underground laboratory. The data are complemented by a thorough modeling of the neutron signal using the GEANT4 simulation package, demonstrating the appropriateness of this tool to model these rare processes. As a result, a precise neutron production yield can be presented. Thus, future underground experiments will be able to reliably model the expected rate of muon-induced neutrons, making it possible to develop the necessary shielding concept to suppress this background component.
This volume comprises nine articles on Islamic astronomy published since 1989 by Benno van Dalen. Van Dalen was the first historian of Islamic astronomy who made full use of the new possibilities of computers in the early 1990s. He implemented various statistical and numerical methods that can be used to determine the mathematical properties of medieval astronomical tables, and utilized these to obtain entirely new, until then unattainable historical results concerning the interdependence of individual tables and hence of entire astronomical works. His programmes for analysing tables, making sexagesimal calculations and converting calendar dates continue to be widely used. The five articles in the first part of this collection explain the principles of a range of statistical methods for determining unknown parameter values underlying astronomical tables and present extensive step-by-step examples for their use. The four articles in the second part provide extensive studies of materials in unpublished primary sources on Islamic astronomy that heavily depend on these methods. The volume is completed with a detailed index.
All theoretical and observational topics relevant to the understanding of the thermonuclear (Type Ia) supernova phenomenon are thoroughly and consistently reviewed by a panel including the foremost experts in the field. The book covers all aspects, ranging from the observations of SNe Ia at all stages and all wavelengths to the 2D and 3D modelling of thermonuclear flames in very dense plasmas. Scenarios for close binary evolution leading to SNe Ia are discussed. Particular emphasis is placed on the homogeneity vs. diversity of SNe Ia and on their use as standard candles to measure cosmological parameters. The book reflects the recent and very significant progress made in both the modelling of the explosions and in the observational field. |
You may like...
Sensory Experience, Adaptation, and…
Lothar Spillman, Bill R Wooten
Hardcover
R4,684
Discovery Miles 46 840
Perception, Causation, and Objectivity
Johannes Roessler, Hemdat Lerman, …
Hardcover
R4,225
Discovery Miles 42 250
Dark Silicon and Future On-chip Systems…
Suyel Namasudra, Hamid Sarbazi-Azad
Hardcover
R3,940
Discovery Miles 39 400
Long-Term Preservation of Digital…
Uwe M. Borghoff, Peter Roedig, …
Hardcover
R1,559
Discovery Miles 15 590
Java for Bioinformatics and Biomedical…
Harshawardhan Bal, Johnny Hujol
Hardcover
R4,070
Discovery Miles 40 700
|