![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Astronomy, space & time > Theoretical & mathematical astronomy
In this compelling book, leading scientists and historians explore the Drake Equation, which guides modern astrobiology's search for life beyond Earth. First used in 1961 as the organising framework for a conference in Green Bank, West Virginia, it uses seven factors to estimate the number of extraterrestrial civilisations in our galaxy. Using the equation primarily as a heuristic device, this engaging text examines the astronomical, biological, and cultural factors that determine the abundance or rarity of life beyond Earth and provides a thematic history of the search for extraterrestrial life. Logically structured to analyse each of the factors in turn, and offering commentary and critique of the equation as a whole, contemporary astrobiological research is placed in a historical context. Each factor is explored over two chapters, discussing the pre-conference thinking and a modern analysis, to enable postgraduates and researchers to better assess the assumptions that guide their research.
The field of ultraviolet astronomy offers unequalled scientific promise yet has not been blessed with a multitude of space missions (as has been the case for other spectral domains). This book contains a distillation of the community's views on the topic and the desires for future observational facilities. As such, it provides the most up-to-date information on the topic of ultraviolet astronomy from a very broad point of view, presenting a compilation of lectures given at a specialist meeting and combining theoretical arguments with observational reports and detailed instrumental information.
Like everyone else, most amateur astronomers live busy lives. After a long day or work or looking after young children, the last thing you want as an observer is to have to lug out a large telescope and spend an hour getting it ready before it can be used. Maybe you are going on vacation somewhere in the countryside where there are sure to be dark skies, but you don't necessarily want astronomy to dominate the trip. Or suppose you are not quite committed to owning a large telescope, but curious enough to see what a smaller, portable setup can accomplish. These are times when a small "grab 'n' go" telescope, or even a pair of binoculars, is the ideal instrument. And this book can guide you in choosing and best utilizing that equipment. What makes a telescope fall into the "grab 'n' go" category? That's easy - speed of setting up, ease of use, and above all, portability. In Part I of this book, we survey the various types of equipment, including accessories and mounts, that are available, and what it is best for what kind of viewing. Part II is about using your grab 'n' go telescope to visit a wealth and wide variety of objects. There are chapters on solar, lunar and planetary observing, as well as descriptions of many deep sky objects, including double and variable stars, planetary, emission and reflection nebulae, open and globular clusters and distant galaxies. This ambitious text is dedicated to those who love to or - because of their limited time - must observe the sky at a moment's notice, whether from the comfort of a backyard or while on business or vacation far from home. Everything you need to know is here. So get started!.
This book contains new translations and a new analysis of the procedure texts of Babylonian mathematical astronomy, the earliest known form of mathematical astronomy of the ancient world. The translations are based on a modern approach incorporating recent insights from Assyriology and translation science. The work contains updated and expanded interpretations of the astronomical algorithms and investigations of previously ignored linguistic, mathematical and other aspects of the procedure texts. Special attention is paid to issues of mathematical representation and over 100 photos of cuneiform tablets dating from 350-50 BCE are presented. In 2-3 years, theauthor intends to continue his study of Babylonian mathematicalastronomy with a new publication which will contain new editions and reconstructions of approx. 250 tabular texts and a new philological, astronomical and mathematical analysis of these texts. Tabular texts are end products of Babylonian math astronomy, computed with algorithms that are formulated in the present volume, Procedure Texts."
Starburst regions in nearby and distant galaxies have a profound impact on our understanding of the early universe. This new, substantially updated and extended edition of Norbert Schulz's unique book "From Dust to Stars" describes complex physical processes involved in the creation and early evolution of stars. It illustrates how these processes reveal themselves from radio wavelengths to high energy X-rays and gamma-rays, with special reference towards high energy signatures. Several sections devoted to key analysis techniques demonstrate how modern research in this field is pursued and new chapters are introduced on massive star formation, proto-planetary disks and observations of young exoplanets. Recent advances and contemporary research on the theory of star formation are explained, as are new observations, specifically from the three great observatories of the Spitzer Space Telescope, the Hubble Space Telescope and the Chandra X-Ray Observatory which all now operate at the same time and make high resolution space based observing in its prime. As indicated by the new title two new chapters have been included on proto-planetary disks and young exoplanets. Many more colour images illustrate attractive old and new topics that have evolved in recent years. The author gives updates in theory, fragmentation, dust, and circumstellar disks and emphasizes and strengthens the targeting of graduate students and young researchers, focusing more on computational approaches in this edition.
The nascent commercial suborbital spaceflight industry will soon open the space frontier to commercial astronauts, payload specialists, scientists and of course, tourists. This book describes the tantalizing science opportunities to be offered when suborbital trips become routine within the next 12 to 18 months. It describes the difference in training and qualification necessary to become either a spaceflight participant or a fully-fledged commercial suborbital astronaut and it describes the vehicles this new class of astronauts will use. Anticipation is on the rise for the new crop of commercial suborbital spaceships that will serve the scientific and educational market. These reusable rocket-propelled vehicles are expected to offer quick, routine and affordable access to the edge of space along with the capability to carry research and educational crew members. Yet to be demonstrated is the hoped-for flight rates of suborbital vehicles. Quick turnaround of these craft is central to realizing the profit-making potential of repeated sojourns to suborbital heights. As this book outlines, vehicle builders still face rigorous shake-out schedules, flight safety hurdles as well as extensive trial-runs of their respective craft before suborbital space jaunts become commonplace. The book examines some of these cash and carry suborbital craft under development by such groups as Blue Origin, Masten Space Systems, Virgin Galactic and XCOR Aerospace and describes the hurdles the space industry is quickly overcoming en-route to the industry developing into a profitable economic entity. Seedhouse also explains how the commercial suborbital spaceflight industry is planning and preparing for the challenges of marketing and financing and how it is marketing the hiring of astronauts. It examines the role of commercial operators as enablers accessing the suborbital frontier and how a partnership with governments and the private sector will eventually permanently integrate the free market s innovation of commercial suborbital space activities."
This book provides a completely revised and expanded version of the previous classic edition 'General Relativity and Relativistic Astrophysics'. In Part I the foundations of general relativity are thoroughly developed, while Part II is devoted to tests of general relativity and many of its applications. Binary pulsars - our best laboratories for general relativity - are studied in considerable detail. An introduction to gravitational lensing theory is included as well, so as to make the current literature on the subject accessible to readers. Considerable attention is devoted to the study of compact objects, especially to black holes. This includes a detailed derivation of the Kerr solution, Israel's proof of his uniqueness theorem, and a derivation of the basic laws of black hole physics. Part II ends with Witten's proof of the positive energy theorem, which is presented in detail, together with the required tools on spin structures and spinor analysis. In Part III, all of the differential geometric tools required are developed in detail. A great deal of effort went into refining and improving the text for the new edition. New material has been added, including a chapter on cosmology. The book addresses undergraduate and graduate students in physics, astrophysics and mathematics. It utilizes a very well structured approach, which should help it continue to be a standard work for a modern treatment of gravitational physics. The clear presentation of differential geometry also makes it useful for work on string theory and other fields of physics, classical as well as quantum.
"...The Multiversal book series is equally unique, providing book-length extensions of the lectures with enough additional depth for those who truly want to explore these fields, while also providing the kind of clarity that is appropriate for interested lay people to grasp the general principles involved." - Lawrence M. Krauss Cosmic Update Covers: A novel approach to uncover the dark faces of the Standard Model of cosmology. The possibility that Dark Energy and Dark Matter are manifestations of the inhomogeneous geometry of our Universe. On the history of cosmological model building and the general architecture of cosmological modes. Illustrations on the Large Scale Structure of the Universe. A new perspective on the classical static Einstein Cosmos. Global properties of World Models including their Topology. The Arrow of Time in a Universe with a Positive Cosmological Constant. Exploring the consequences of a fundamental Cosmological Constant for our Universe. Exploring why the current observed acceleration of the Universe may not be its final destiny. Demonstrating that nature forbids the existence of a pure Cosmological Constant. Our current understanding of the long term (in time scales that greatly exceed the current age of the Universe) future of the Universe. The long term fate and eventual destruction of the astrophysical objects that populate the universe -- including clusters, galaxies, stars, planets, and black holes. The material is presented in a layperson-friendly language followed by addition technical sections that explain the basic equations and principles. This feature is very attractive to readers who want to learn more about the theories involved beyond the basic description. "Multiversal Journeys (TM) is a trademark of Farzad Nekoogar and Multiversal Journeys, a 501 (c) (3) nonprofit organization."
As our closest stellar companion and composed of two Sun-like stars and a third small dwarf star, Alpha Centauri is an ideal testing ground of astrophysical models and has played a central role in the history and development of modern astronomy-from the first guesses at stellar distances to understanding how our own star, the Sun, might have evolved. It is also the host of the nearest known exoplanet, an ultra-hot, Earth-like planet recently discovered. Just 4.4 light years away Alpha Centauri is also the most obvious target for humanity's first directed interstellar space probe. Such a mission could reveal the small-scale structure of a new planetary system and also represent the first step in what must surely be humanity's greatest future adventure-exploration of the Milky Way Galaxy itself. For all of its closeness, Centauri continues to tantalize astronomers with many unresolved mysteries, such as how did it form, how many planets does it contain and where are they, and how might we view its extensive panorama directly? In this book we move from the study of individual stars to the study of our Solar System and our nearby galactic neighborhood. On the way we will review the rapidly developing fields of exoplanet formation and detection.
The 50th anniversary of the discovery of quasars in 1963 presents an interesting opportunity to ask questions about the current state of quasar research. Formatted as a series of interviews with noted researchers in the field, each of them asked to address a specific set of questions covering topics selected by the editors, this book deals with the historical development of quasar research and discusses how advances in instrumentation and computational capabilities have benefitted quasar astronomy and have changed our basic understanding of quasars. In the last part of the book the interviews address the current topic of the role of quasars in galaxy evolution. They summarise open issues in understanding active galactic nuclei and quasars and present an outlook regarding what future observational facilities both on the ground and in space might reveal. Its interview format, the fascinating topic of quasars and black holes, and the lively recollections and at times controversial views of the contributors make this book both rewarding and a pleasure to read!
Starburst regions in nearby and distant galaxies have a profound impact on our understanding of the early universe. This new, substantially updated and extended edition of Norbert Schulz s unique book "From Dust to Stars" describes complex physical processes involved in the creation and early evolution of stars. It illustrates how these processes reveal themselves from radio wavelengths to high energy X-rays and gamma rays, with special reference towards high energy signatures. Several sections devoted to key analysis techniques demonstrate how modern research in this field is pursued and new chapters are introduced on massive star formation, proto-planetary disks and observations of young exoplanets. Recent advances and contemporary research on the theory of star formation are explained, as are new observations, specifically from the three great observatories of the Spitzer Space Telescope, the Hubble Space Telescope and the Chandra X-Ray Observatory which all now operate at the same time and make high resolution space based observing in its prime. As indicated by the new title two newchapters have been included on proto-planetary disks and young exoplanets. Many more colour images illustrate attractive old and new topics that have evolved in recent years. The author gives updates in theory, fragmentation, dust, and circumstellar disks and emphasizes and strengthens the targeting of graduate students and young researchers, focusing more on computational approaches in this edition."
Electrical processes take place in all planetary atmospheres. There is evidence for lightning on Venus, Jupiter, Saturn, Uranus and Neptune, it is possible on Mars and Titan, and cosmic rays ionise every atmosphere, leading to charged droplets and particles. Controversy surrounds the role of atmospheric electricity in physical climate processes on Earth; here, a comparative approach is employed to review the role of electrification in the atmospheres of other planets and their moons. This book reviews the theory, and, where available, measurements, of planetary atmospheric electricity, taken to include ion production and ion-aerosol interactions. The conditions necessary for a global atmospheric electric circuit similar to Earth s, and the likelihood of meeting these conditions in other planetary atmospheres, are briefly discussed. Atmospheric electrification is more important at planets receiving little solar radiation, increasing the relative significance of electrical forces. Nucleation onto atmospheric ions has been predicted to affect the evolution and lifetime of haze layers on Titan, Neptune and Triton. For planets closer to Earth, heating from solar radiation dominates atmospheric circulations. Mars may have a global circuit analogous to the terrestrial model, but based on electrical discharges from dust storms, and Titan may have a similar global circuit, based on transfer of charged raindrops. There is an increasing need for direct measurements of planetary atmospheric electrification, in particular on Mars, to assess the risk for future unmanned and manned missions. Theoretical understanding could be increased by cross-disciplinary work to modify and update models and parameterisations initially developed for a specific atmosphere, to make them more broadly applicable to other planetary atmospheres. The possibility of electrical processes in the atmospheres of exoplanets is also discussed."
Measuring the spin distribution of supermassive black holes is of critical importance for understanding how these black holes and their host galaxies form and evolve over time, yet this type of study is only in its infancy. This brief describes how astronomers measure spin in supermassive black holes using X-ray spectroscopy. It also reviews the constraints that have been placed on the spin distribution in local, bright active galaxies over the past six years, and the cosmological implications of these constraints. Finally, it summarizes the open questions that remain in this exciting new field of research and points toward future discoveries soon to be made by the next generation of space-based observatories.
Based on a number of new discoveries resulting from 10 years of Chandra and XMM-Newton observations and corresponding theoretical works, this is the first book to address significant progress in the research of the Hot Interstellar Matter in Elliptical Galaxies. A fundamental understanding of the physical properties of the hot ISM in elliptical galaxies is critical, because they are directly related to the formation and evolution of elliptical galaxies via star formation episodes, environmental effects such as stripping, infall, and mergers, and the growth of super-massive black holes. Thanks to the outstanding spatial resolution of Chandra and the large collecting area of XMM-Newton, various fine structures of the hot gas have been imaged in detail and key physical quantities have been accurately measured, allowing theoretical interpretations/predictions to be compared and tested against observational results. This book will bring all readers up-to-date on this essential field of research.
After several decades spent in astronomical semi-obscurity, the Moon has of late suddenly emerged as an object of considerable interest to students of astronomy as well as of other branches of natural science and technology; and the reasons for this are indeed of historical significance. For the Moon has now been destined to be the first celestial body outside the confines of our own planet to be reconnoitered at a close range by means of spacecraft built and sent out by human hand for this purpose. At the time of writing, not less than ten such spacecraft of American as well as Rus sian origin landed already on different parts of the lunar surface; and some of these provided remarkable records of its detail structure to a spatial resolution increased thousandfold over that attained so far from our ground-based facilities. A renewed interest in our satellite, stemming from this source, on the part of the students of many branches of science and technology has also underlined the need for presenting the gist of our present knowledge in this field in the form that could serve as an introduction to the study of the Moon not only for astronomers, but also for serious students from other branches of science or technology.
The present sixth volume of ISSI Space Sciences Series is the outcome of the most ambitious study project of ISSI hitherto, that on 'Source and Loss Processes of Magnetospheric Plasma'. The goal has been to produce a fully integrated book on the subject, which gives an authoritative overview of all aspects of the topic in a well organized form, useful and readable both for active researchers in the field and for young scientists who are starting their research in space physics. In order to represent the full diversity of experience and perspective that exists in the science community, some 50 leading scientists from allover the world were invited to participate in the project and contribute to the text. With the scientific competence well in hand, the dominating problem in producing the book has been to achieve a degree of consistency in style, nomenclature, notations and format, as well as good cross referencing. To what degree we have succeeded in reaching our goal of delivering a volume that will be useful to the community in both its comprehensiveness and readability remains to be decided by the readers. The book is the outcome of a three year long process. In December 1995 the study project on 'Source and Loss Processes of Magnetospheric Plasma' was se lected by ISSI after consultations with several groups of senior representatives of the space physics community."
This book is an abbreviated, partly re-written version of "Under the Radar - The First Woman in Radio Astronomy: Ruby Payne-Scott." It addresses a general readership interested in historical and sociological aspects of astronomy and presents the biography of Ruby Payne-Scott (1912 - 1981). As the first female radio astronomer (and one of the first people in the world to consider radio astronomy), she made classic contributions to solar radio physics. She also played a major role in the design of the Australian government's Council for Scientific and Industrial Research radars, which were in turn of vital importance in the Southwest Pacific Theatre in World War II. These radars were used by military personnel from Australia, the United States and New Zealand. From a sociological perspective, her career offers many examples of the perils of being a female academic in the first half of the 20th century. Written in an engaging style and complemented by many historical photographs, this book offers fascinating insights into the beginnings of radio astronomy and the role of a pioneering woman in astronomy. To set the scene, the first colourfully illustrated chapter presents an overview of solar astrophysics and the tools of the radio astronomer. From the reviews of "Under the Radar": "This is a beautifully-researched, copiously-illustrated and well-written book that tells us much more than the life of one amazing female radio astronomer. It also provides a profile on radar developments during WWII and on Australia's pre-eminent place in solar radio astronomy in the years following WWII. Under the Radar is compelling reading, and if you have taken the time to read right through this review then it certainly belongs on your bookshelf!" (Wayne Orchiston, Journal of Astronomical History and Heritage, March, 2010)
Beyond the four centuries of sunspot observation and the five decades during which artificial satellites have monitored the Sun that is to say for 99.99999% of the Sun 's existence our knowledge of solar history depends largely on analogy with kindred main sequence stars, on the outcome of various kinds of modelling, and on indirect measures of solar activity. They include the analysis of lunar rocks and meteorites for evidence of solar flares and other components of the solar cosmic-ray (SCR) flux, and the measurement of cosmogenic isotopes in wood, stratified ice and marine sediments to evaluate changes in the galactic cosmic-ray (GCR) flux and thus infer changes in the sheltering magnetic fields of the solar wind. In addition, shifts in the global atmospheric circulation which appear to result from cyclic fluctuations in solar irradiance have left their mark in river sediments and in the isotopic composition of cave deposits. In this volume the results these sources have already produced have been summarised, paying special attention to those that reflect processes in different parts of the Sun 's interior and that display periodicities and trends which may enable us to forecast future large-scale environmental changes.
The most massive stars in the galaxy - those with more than 15 to
20 solar masses - are lilkely to ionize their surroundings before
they reach their final mass. How can they accrete in spite of the
presence of over-pressurized gas?
The aim of the inaugural meeting of the Sant Cugat Forum on Astrophysics was to address, in a global context, the current understanding of and challenges in high-energy emissions from isolated and non-isolated neutron stars, and to confront the theoretical picture with observations of both the Fermi satellite and the currently operating ground-based Cherenkov telescopes. Participants have also discussed the prospects for possible observations with planned instruments across the multi-wavelength spectrum (e.g. SKA, LOFAR, E-VLT, IXO, CTA) and how they will impact our theoretical understanding of these systems. In keeping with the goals of the Forum, this book not only represents the proceedings of the meeting, but also a reflection on the state-of-the-art in the topic.
The physicist Friedrich Houtermans (1903-1966) was an essential promoter and proponent of the development of physics in Berne. He introduced a number of activities in the field of elementary particles, with a special focus on the physics of cosmic rays, and important contributions in applied physics. This biography of Houtermans was written by Edoardo Amaldi and was almost finished just before his unexpected death in 1989. The editors have only corrected typographical errors and have introduced only minimal text changes in order to preserve the original content. Additionally they have collected and included unpublished pictures and memories from Houtermans' students and collaborators. The text is the result of a thorough and intensive study on Houtermans' life and character carried out by Edoardo Amaldi. It is more than a biography, since the figure of Houtermans is set in a historical perspective of Europe between the two world wars. This book will be of great interest to historians and historians of science.
Theoretical researches in general relativity and observational data from galactic astronomy combine in this volume in contributions to one of the oldest questions of natural philosophy: Is the structure of the physical world more adequately described by a continuous or a discrete mode of representation? Since the days of the Pythagoreans, this question has surfaced from time to time in various guises in science as well as in philosophy. One of the most bitterly contested and illuminating controversies between the continuous and the discrete viewpoints is to be found in the wave versus corpuscular description of optical phenom enae. This controversy was not resolved to the satisfaction of most of its protaganists until the development of the quantum theory. However, several obscurities that still becloud the question suggest that some deeper formulation may be necessary before more satisfactory answers can be given 1. The firm establishment of the validity of quantized structure and discrete energy distributions on the atomic scale following the ideas of Max Planck, together with the apparent absence of quan tization effect in astronomical and cosmic structures leaves uncertainties concerning the role played by the scale of the observer in perceiving or not perceiving discrete distributions. Some of the metaphysical inter pretations and implications of the quantum mechanics that have been made in recent years 2 would be subject to revision if the existence of discretized descriptions were to be established in astronomical and cosmic structures."
Three eminent scientists, each well known for the clarity of their writing, present for students and researchers what is known about the internal structure, origin and evolution of White Dwarfs, Neutron Stars and Black Holes, all objects at the final stage of stellar evolution. They cover fascinating topics such as pulsation of white dwarfs, millisecond pulsars or the dynamics around black holes. The book is written for graduate students in astrophysics, but is also of interest to professional astronomers and physicists.
C. Agostinelli: Sul problema delle aurore boreali e il moto di un corpuscolo elettrizzato in presenza di un dipolo magnetico.- G. Colombo: Introduction to the theory of earth 's motion about its center of mass.- E.M. Gaposchkin: The motion of the pole and the earth 's elasticity as studied from the gravity field of the earth by means of artificial earth satellites.- I.I. Shapiro: Radar astronomy, general relativity, and celestial mechanics.- V. Szebehely: Applications of the restricted problem of three bodies in space research.- G.A. Wilkins: The analysis of the observation of the satellites of Mars.
It may at first seem that the world of subatomic physics is far removed from our every day lives. Isn t it all just a waste of time and taxpayers' money? Hopefully, all who read this book will come to a different conclusion. Collider physics is all about our origins, and this aspect alone makes it worthy of our very best attention. The experiments conducted within the vast collider chambers are at the forefront of humanity s quest to unweave the great tapestry that is the universe. Everything is connected. Within the macrocosm is the microcosm. By knowing how matter is structured, how atoms and elementary particles interact, and what forces control the interactions between the particles, we discover further clues as to why the universe is the way it is, and we uncover glimpses of how everything came into being. The Large Hadron Collider (LHC), in the process of coming online at CERN, is the world s largest and most complex machine. It represents the pinnacle of human ingenuity, and its physical characteristics, costs, and workings astound us at every turn. We are literally humbled by the machine that has been produced through a grand international collaboration of scientists. This book is about what those scientists hope to discover with the LHC, for hopes do run high, and there is much at stake. Careers, reputations and prestigious science prizes will be realized, and possibly lost, in the wake of the results that the LHC will produce. And there are risks, real and imagined. The LHC will probe the very fabric of matter and it will help us understand the very weft and the weave of the universe." |
![]() ![]() You may like...
Logic on the Track of Social Change
David Braybrooke, Bryson Brown, …
Hardcover
R1,547
Discovery Miles 15 470
The Art of Logic - How to Make Sense in…
Eugenia Cheng
Paperback
![]()
Contradictions, from Consistency to…
Walter Carnielli, Jacek Malinowski
Hardcover
R2,915
Discovery Miles 29 150
Logic, Computation, Hierarchies
Vasco Brattka, Hannes Diener, …
Hardcover
R4,752
Discovery Miles 47 520
|