![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time > Theoretical & mathematical astronomy
Proceedings of the 129th Symposium of the International Astronomical Union, held in Cambridge, MA, USA, May 10-15, 1987
This book employs computer simulations of 'artificial' Universes to investigate the properties of two popular alternatives to the standard candidates for dark matter (DM) and dark energy (DE). It confronts the predictions of theoretical models with observations using a sophisticated semi-analytic model of galaxy formation. Understanding the nature of dark matter (DM) and dark energy (DE) are two of the most central problems in modern cosmology. While their important role in the evolution of the Universe has been well established-namely, that DM serves as the building blocks of galaxies, and that DE accelerates the expansion of the Universe-their true nature remains elusive. In the first half, the authors consider 'sterile neutrino' DM, motivated by recent claims that these particles may have finally been detected. Using sophisticated models of galaxy formation, the authors find that future observations of the high redshift Universe and faint dwarf galaxies in the Local Group can place strong constraints on the sterile neutrino scenario. In the second half, the authors propose and test novel numerical algorithms for simulating Universes with a 'modified' theory of gravity, as an alternative explanation to accelerated expansion. The authors' techniques improve the efficiency of these simulations by more than a factor of 20 compared to previous methods, inviting the readers into a new era for precision cosmological tests of gravity.
'The first two editions of this textbook have received well-deserved high acclaims, and this - the third edition - deserves no less. Its explanations of the whole gamut of atomic and molecular spectroscopy provide a solid grasp of the theory as well as how to understand such spectra in practice. It thus makes an ideal companion to books that start from the observational aspect of spectroscopy, whether in the lab or at the telescope ... This new edition of TennysonaEURO (TM)s book ought to be in the library of every astronomical department.'The Observatory Magazine'It closely follows the course given to third year UCL undergraduates, and the worked examples have surely been tested on students ... The last two chapters serve as an effective appendix on more specialised topics in atomic and molecular theory.'Contemporary PhysicsThe third edition of Astronomical Spectroscopy examines the physics necessary to understand and interpret astronomical spectra. It offers a step-by-step guide to the atomic and molecular physics involved in providing astronomical spectra starting from the relatively simple hydrogen atom and working its way to the spectroscopy of small molecules.Based on UCL course material, this book uses actual astronomical spectra to illustrate the theoretical aspects of the book to give the reader a feel for such spectra as well as an awareness of what information can be retrieved from them. It also provides comprehensive exercises, with answers given, to aid understanding.
This revealing work examines an approach from ancient astronomy to what was then a particularly important question, namely that of understanding the relationship between the position in the ecliptic and the time it takes for a fixed-length of the ecliptic beginning at that point to rise above the eastern horizon. Schemes known as "rising time schemes" were used to give lengths of the celestial equator corresponding to each of the twelve zodiacal signs which make up the ecliptic. This book investigates the earliest known examples of these schemes which come from Babylonia and date to the mid to late first millennium BC. Making an important contribution to our knowledge of astronomy in the ancient world, this volume includes editions and translations of all of the known Babylonian rising time texts, including several texts that are identified for the first time. Through a close examination of the preserved texts it has been possible to reconstruct the complete Babylonian rising time scheme. This reconstruction is unprecedented in its completeness, and it is also now possible to situate the scheme within a genre of Babylonian astronomy known as schematic astronomy which presents theoretical descriptions of the astronomical phenomena. The unique discoveries and fresh explorations in this book will be of interest to historians of ancient astronomy, scholars of Babylonian history and those investigating the origins of scientific thought.
The second edition of Solar System Astrophysics: Background Science and the Inner Solar System provides new insights into the burgeoning field of planetary astronomy. As in the first edition, this volume begins with a rigorous treatment of coordinate frames, basic positional astronomy, and the celestial mechanics of two and restricted three body system problems. Perturbations are treated in the same way, with clear step-by-step derivations. Then the Earth's gravitational potential field and the Earth-Moon system are discussed, and the exposition turns to radiation properties with a chapter on the Sun. The exposition of the physical properties of the Moon and the terrestrial planets are greatly expanded, with much new information highlighted on the Moon, Mercury, Venus, and Mars. All of the material is presented within a framework of historical importance. This book and its sister volume, Solar System Astrophysics: Background Science and the Inner Solar system, are pedagogically well written, providing clearly illustrated explanations, for example, of such topics as the numerical integration of the Adams-Williamson equation, the equations of state in planetary interiors and atmospheres, Maxwell's equations as applied to planetary ionospheres and magnetospheres, and the physics and chemistry of the Habitable Zone in planetary systems. Together, the volumes form a comprehensive text for any university course that aims to deal with all aspects of solar and extra-solar planetary systems. They will appeal separately to the intellectually curious who would like to know how just how far our knowledge of the solar system has progressed in recent years.
This book introduces an analytic method to describe the shadow of black holes. As an introduction, it presents a survey of the attempts to observe the shadow of galactic black holes. Based on a detailed discussion of the Plebanski-Demianski class of space-times, the book derives analytical formulas for the photon regions and for the boundary curve of the shadow as seen by an observer in the domain of outer communication. It also analyzes how the shadow depends on the motion of the observer. For all cases, the photon regions and shadows are visualized for various values of the parameters. Finally, it considers how the analytical formulas can be used for calculating the horizontal and vertical angular diameters of the shadow, and estimates values for the black holes at the centers of our Galaxy near Sgr A* and of the neighboring galaxy M87.
Awarded the American Astronomical Society (AAS) Rodger Doxsey Travel Prize, and with a foreword by thesis supervisor Professor Shardha Jogee at the University of Texas at Austin, this thesis discusses one of the primary outstanding problems in extragalactic astronomy: how galaxies form and evolve. Galaxies consist of two fundamental kinds of structure: rotationally supported disks and spheroidal/triaxial structures supported by random stellar motions. Understanding the balance between these galaxy components is vital to comprehending the relative importance of the different mechanisms (galaxy collisions, gas accretion and internal secular processes) that assemble and shape galaxies. Using panchromatic imaging from some of the largest and deepest space-based galaxy surveys, an empirical census of galaxy structure is made for galaxies at different cosmic epochs and in environments spanning low to extremely high galaxy number densities. An important result of this work is that disk structures are far more prevalent in massive galaxies than previously thought. The associated challenges raised for contemporary theoretical models of galaxy formation are discussed. The method of galaxy structural decomposition is treated thoroughly since it is relevant for future studies of galaxy structure using next-generation facilities, like the James Webb Space Telescope and the ground-based Giant Magellan Telescope with adaptive optics. These proceedings provide the latest results on dark matter and dark energy research. The UCLA Department of Physics and Astronomy hosted its tenth Dark Matter and Dark Energy conference in Marina del Rey and brought together all the leaders in the field. The symposium provided a scientific forum for the latest discussions in the field. Topics covered at the symposium: •Status of measurements of the equation of state of dark energy and new experiments •The search for missing energy events at the LHC and implications for dark matter search •Theoretical calculations on all forms of dark matter (SUSY, axions, sterile neutrinos, etc.) •Status of the indirect search for dark matter •Status of the direct search for dark matter in detectors around the world •The low-mass wimp search region •The next generation of very large dark matter detectors •New underground laboratories for dark matter search Â
In this fascinating book, the author traces the careers, ideas, discoveries, and inventions of two renowned scientists, Athanasius Kircher and Galileo Galilei, one a Jesuit, the other a sincere man of faith whose relations with the Jesuits deteriorated badly. The Author documents Kircher's often intuitive work in many areas, including translating the hieroglyphs, developing sundials, and inventing the magic lantern, and explains how Kircher was a forerunner of Darwin in suggesting that animal species evolve. Galileo's work on scales, telescopes, and sun spots is mapped and discussed, and care is taken to place his discoveries within their cultural environment. While Galileo is without doubt the "winner" in the comparison with Kircher, the latter achieved extraordinary insights by unconventional means. For all Galileo's fine work, the author believes that scientists do need to regain the power of dreaming, vindicating Kirchner's view.
This volume presents the current knowledge of magnetic fields in diffuse astrophysical media. Starting with an overview of 21st century instrumentation to observe astrophysical magnetic fields, the chapters cover observational techniques, origin of magnetic fields, magnetic turbulence, basic processes in magnetized fluids, the role of magnetic fields for cosmic rays, in the interstellar medium and for star formation. Written by a group of leading experts the book represents an excellent overview of the field. Nonspecialists will find sufficient background to enter the field and be able to appreciate the state of the art.
The quantity of numbered minor planets is now approaching half a million. Together with this Addendum, the sixth edition of the Dictionary of Minor Planet Names, which is the IAU's official reference for the field, now covers more than 19,000 named minor planets. In addition to being of practical value for identification purposes, the Dictionary of Minor Planet Names provides authoritative information about the basis for the rich and colorful variety of ingenious names, from heavenly goddesses to artists, from scientists to Nobel laureates, from historical or political figures to ordinary women and men, from mountains to buildings, as well as a variety of compound terms and curiosities. This Addendum to the 6th edition of the Dictionary of Minor Planet Names adds approximately 2200 entries. It also contains many corrections, revisions and updates to the entries published in earlier editions. This work is an abundant source of information for anyone interested in minor planets and who enjoys reading about the people and things minor planets commemorate.
This thesis presents a systematic study of the orbital evolution, gravitational wave radiation, and merger remnant of the black hole-neutron star binary merger in full general relativity for the first time. Numerical-relativity simulations are performed using an adaptive mesh refinement code, SimulAtor for Compact objects in Relativistic Astrophysics (SACRA), which adopts a wide variety of zero-temperature equations of state for the neutron star matter. Gravitational waves provide us with quantitative information on the neutron star compactness and equation of state via the cutoff frequency in the spectra, if tidal disruption of the neutron star occurs before the binary merges. The cutoff frequency will be observed by next-generation laser interferometric ground-based gravitational wave detectors, such as Advanced LIGO, Advanced VIRGO, and KAGRA. The author has also determined that the mass of remnant disks are sufficient for the remnant black hole accretion disk to become a progenitor of short-hard gamma ray bursts accompanied by tidal disruptions and suggests that overspinning black holes may not be formed after the merger of even an extremely spinning black hole and an irrotational neutron star.
The existence of blue straggler stars, which appear younger, hotter, and more massive than their siblings, is at odds with a simple picture of stellar evolution. Such stars should have exhausted their nuclear fuel and evolved long ago to become cooling white dwarfs. They are found to exist in globular clusters, open clusters, dwarf spheroidal galaxies of the Local Group, OB associations and as field stars. This book summarises the many advances in observational and theoretical work dedicated to blue straggler stars. Carefully edited extended contributions by well-known experts in the field cover all the relevant aspects of blue straggler stars research: Observations of blue straggler stars in their various environments; Binary stars and formation channels; Dynamics of globular clusters; Interpretation of observational data and comparison with models. The book also offers an introductory chapter on stellar evolution written by the editors of the book.
Schumann resonance has been studied for more than half a century. The field became popular among researchers of the terrestrial environment using natural sources of electromagnetic radiation—lightning strokes, primarily—and now many Schumann observatories have been established around the world. A huge number of publications can be found in the literature, the most recent collection of which was presented in a special Schumann resonance section of the journal Radio Science in 2007. The massive publications, however, impede finding information about how to organize measurements and start observations of global electromagnetic resonance. Relevant information is scattered throughout many publications, which are not always available. The goal of this book is to collect all necessary data in a single edition in order to describe the demands of the necessary equipment and the field-site as well as the impact of industrial and natural interference, and to demonstrate typical results and obstacles often met in measurements. The authors not only provide representative results but also describe unusual radio signals in the extremely low-frequency (ELF) band and discuss signals in the adjacent frequency ranges.
This thesis represents the first wide-field photometric and spectroscopic survey of star clusters in the nearby late-spiral galaxy M33. This system is the nearest example of a dwarf spiral galaxy, which may have a unique role in the process of galaxy formation and evolution. The cold dark matter paradigm of galaxy formation envisions large spiral galaxies, such as the Milky Way, being formed from the merger and accretion of many smaller dwarf galaxies. The role that dwarf spiral galaxies play in this process is largely unclear. One of the goals of this thesis is to use the star cluster population of M33 to study its formation and evolution from its early stages to the present. The thesis presents a new comprehensive catalog of M33 star clusters, which includes magnitudes, colors, structural parameters, and several preliminary velocity measurements. Based on an analysis of these data, the thesis concludes that, among other things, the evolution of M33 has likely been influenced by its nearby massive neighbor M31.
Astrochemistry and Astrobiology is the debut volume in the new series Physical Chemistry in Action. Aimed at both the novice and experienced researcher, this volume outlines the physico-chemical principles which underpin our attempts to understand astrochemistry and predict astrobiology. An introductory chapter includes fundamental aspects of physical chemistry required for understanding the field. Eight further chapters address specific topics, encompassing basic theory and models, up-to-date research and an outlook on future work. The last chapter examines each of the topics again but addressed from a different angle. Written and edited by international experts, this text is accessible for those entering the field of astrochemistry and astrobiology, while it still remains interesting for more experienced researchers.
After addressing strange cosmological hypotheses in Weird Universe, David Seargent tackles the no-less bizarre theories closer to home. Alternate views on the Solar System's formation, comet composition, and the evolution of life on Earth are only some of the topics he addresses in this new work. Although these ideas exist on the fringe of mainstream astronomy, they can still shed light on the origins of life and the evolution of the planets. Continuing the author's series of books popularizing strange astronomy facts and knowledge, Weird Astronomical Theories presents an approachable exploration of the still mysterious questions about the origin of comets, the pattern of mass extinctions on Earth, and more. The alternative theories discussed here do not come from untrained amateurs. The scientists whose work is covered includes the mid-20th century Russian S. K. Vsekhsvyatskii, cosmologist Max Tegmark, British astronomers Victor Clube and William Napier, and American Tom Van Flandern, a specialist in celestial mechanics who held a variety of unusual beliefs about the possibility of intelligent life having come from elsewhere. Despite being outliers, their work reveals how much astronomical understanding is still evolving. Unconventional approaches have also pushed our scientific understanding for the better, as with R.W. Mandl's approaching Einstein with regard to gravitational lensing. Even without full substantiation (and some theories are hardly credible), their hypotheses allow for a new perspective on how the Solar System became what it is today.
The field of ultraviolet astronomy offers unequalled scientific promise yet has not been blessed with a multitude of space missions (as has been the case for other spectral domains). This book contains a distillation of the community's views on the topic and the desires for future observational facilities. As such, it provides the most up-to-date information on the topic of ultraviolet astronomy from a very broad point of view, presenting a compilation of lectures given at a specialist meeting and combining theoretical arguments with observational reports and detailed instrumental information.
This book contains new translations and a new analysis of the procedure texts of Babylonian mathematical astronomy, the earliest known form of mathematical astronomy of the ancient world. The translations are based on a modern approach incorporating recent insights from Assyriology and translation science. The work contains updated and expanded interpretations of the astronomical algorithms and investigations of previously ignored linguistic, mathematical and other aspects of the procedure texts. Special attention is paid to issues of mathematical representation and over 100 photos of cuneiform tablets dating from 350-50 BCE are presented. In 2-3 years, theauthor intends to continue his study of Babylonian mathematicalastronomy with a new publication which will contain new editions and reconstructions of approx. 250 tabular texts and a new philological, astronomical and mathematical analysis of these texts. Tabular texts are end products of Babylonian math astronomy, computed with algorithms that are formulated in the present volume, Procedure Texts."
The word "landscape" can mean picture as well as natural scenery. Recent advances in space exploration imaging have allowed us to now have landscapes never before possible, and this book collects some of the greatest views and vistas of Mars, Venus's Titan, Io and more in their full glory, with background information to put into context the foreign landforms of our Solar System. Here, literally, are 'other-worldly' visions of strange new scenes, all captured by the latest technology by landing and roving vehicles or by very low-flying spacecraft. There is more than scientific interest in these views. They are also aesthetically beautiful and intriguing, and Dr. Murdin in a final chapter compares them to terrestrial landscapes in fine art. Planetary Vistas is a science book and a travel book across the planets and moons of the Solar System for armchair space explorers who want to be amazed and informed. This book shows what future space explorers will experience, because these are the landscapes that astronauts and space tourists will see.
In this compelling book, leading scientists and historians explore the Drake Equation, which guides modern astrobiology's search for life beyond Earth. First used in 1961 as the organising framework for a conference in Green Bank, West Virginia, it uses seven factors to estimate the number of extraterrestrial civilisations in our galaxy. Using the equation primarily as a heuristic device, this engaging text examines the astronomical, biological, and cultural factors that determine the abundance or rarity of life beyond Earth and provides a thematic history of the search for extraterrestrial life. Logically structured to analyse each of the factors in turn, and offering commentary and critique of the equation as a whole, contemporary astrobiological research is placed in a historical context. Each factor is explored over two chapters, discussing the pre-conference thinking and a modern analysis, to enable postgraduates and researchers to better assess the assumptions that guide their research.
ThisvolumeisacollectionofarticlesoriginallypublishedonaSpecialIssueoftheAstrophysicsandSpaceScienceJournal. It is intended to give a comprehensive overview of the current state of knowledge in solar and stellar modelling, with the aim of comparing and extending what we know from the detailed solar modelling, made possible by the helioseismic tools and by the recent analysis of the solar spectrum, to the modelling and understanding of generic stellar structures and their evolution. Particular emphasis is devoted to the role of the input physics, and its relevant uncertainties, in the construction of stellar models and in the resulting predictions for general observable quantities. Issues related to convection, overshoot, diffusion and settling of helium and heavy elements, rotation, chemical composition and magnetic eld are extensively discussed. Large space is dedicated to the application of helio- and asteroseismic techniques as tools to prove the theory of the evolution and the structure of the stars. Comments on prospects for future improvements and re nements of the theoretical models are given, focusing on the possibility of getting ever more precise helioseismic and asteroseismic observations from ground and space. The articles included in this volume are the results of the HELAS-NA5 workshop 'Synergies between solar and stellar modelling' held in Rome from 22nd to 26th of June 2009, which was an unique occasion to gather the solar and the stellar physics communities to discuss the urgent questions risen by recent photometric and spectroscopic observational results.
"...The Multiversal book series is equally unique, providing book-length extensions of the lectures with enough additional depth for those who truly want to explore these fields, while also providing the kind of clarity that is appropriate for interested lay people to grasp the general principles involved." - Lawrence M. Krauss Cosmic Update Covers: A novel approach to uncover the dark faces of the Standard Model of cosmology. The possibility that Dark Energy and Dark Matter are manifestations of the inhomogeneous geometry of our Universe. On the history of cosmological model building and the general architecture of cosmological modes. Illustrations on the Large Scale Structure of the Universe. A new perspective on the classical static Einstein Cosmos. Global properties of World Models including their Topology. The Arrow of Time in a Universe with a Positive Cosmological Constant. Exploring the consequences of a fundamental Cosmological Constant for our Universe. Exploring why the current observed acceleration of the Universe may not be its final destiny. Demonstrating that nature forbids the existence of a pure Cosmological Constant. Our current understanding of the long term (in time scales that greatly exceed the current age of the Universe) future of the Universe. The long term fate and eventual destruction of the astrophysical objects that populate the universe -- including clusters, galaxies, stars, planets, and black holes. The material is presented in a layperson-friendly language followed by addition technical sections that explain the basic equations and principles. This feature is very attractive to readers who want to learn more about the theories involved beyond the basic description. "Multiversal Journeys (TM) is a trademark of Farzad Nekoogar and Multiversal Journeys, a 501 (c) (3) nonprofit organization."
The 50th anniversary of the discovery of quasars in 1963 presents an interesting opportunity to ask questions about the current state of quasar research. Formatted as a series of interviews with noted researchers in the field, each of them asked to address a specific set of questions covering topics selected by the editors, this book deals with the historical development of quasar research and discusses how advances in instrumentation and computational capabilities have benefitted quasar astronomy and have changed our basic understanding of quasars. In the last part of the book the interviews address the current topic of the role of quasars in galaxy evolution. They summarise open issues in understanding active galactic nuclei and quasars and present an outlook regarding what future observational facilities both on the ground and in space might reveal. Its interview format, the fascinating topic of quasars and black holes, and the lively recollections and at times controversial views of the contributors make this book both rewarding and a pleasure to read! |
You may like...
Gravity and the Quantum - Pedagogical…
Jasjeet Singh Bagla, Sunu Engineer
Hardcover
R4,271
Discovery Miles 42 710
Orbits - 2nd Order Singularity-free…
Guochang Xu, Jia Xu
Hardcover
The Star of Bethlehem and the Magi…
George H Kooten, Peter Barthel
Hardcover
R6,227
Discovery Miles 62 270
|