Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Astronomy, space & time > Theoretical & mathematical astronomy
The authors discuss such topics as "impacts with asteroids, the greenhouse effect, nuclear winter, fringe catastrophism, supernovae and an assessment of risks." (New Scientist)
The present book is a translation of the original German edition (published in 1982) with some minor corrections and improvements. The guide to sup plementary and advanced literature given in the Appendix, however, has been brought up to date. This book is addressed primarily to students taking astronomy as a prin cipal or subsidiary subject, and to scientists of related fields, but amateur as tronomers should also be able to profit from it. For most chapters an elementary knowledge of mathematics and physics will be sufficient, however, Chaps. 5 and 6 impose somewhat greater requirements. In addition the reader should already be acquainted with the basic concepts of stellar physics as treated in introduc tory books, including the spectral types, the system of stellar magnitudes and colours, absolute magnitudes and luminosities, the Herlzsprung-Russell dia gram and its interpretation. A modem textbook should use SI units. On the other hand, the use of the cgs system is still the prevailing custom in astrophysics - together with the special units of astronomy: length is quoted in parsecs [pc], mass in solar masses [M0] and time in years [a]. We have therefore compromised and employed both cgs and SI units in this book, whichever was the appropriate choice in each instance. A table for conversion of cgs units into SI units and vice versa is given in the Appendix.
Proceedings of the 129th Symposium of the International Astronomical Union, held in Cambridge, MA, USA, May 10-15, 1987
This volume is the proceedings of IAU Symposium No. 118 on "Instrumentation. and Research Programmes for Small Telescopes," where small telescopes were defined as those ground-based instruments with apertures less than 1.5m. The scientific goal of the symposium was to emphasise research programmes which were more suited to smaller tele scopes, on which frequent regular observations can be made. A wide variety of topics on instrumentation, photometry, spectroscopy and polarimetry of objects in the solar system to extragalactic systems were discussed. Each of the four scientific days of the symposium comprised a number of invited review papers, contributed oral papers and discussion sessions devoted purely to the large number ( 4) of poster papers. An introductory paper on the research potential of small telescopes sets the scene for the symposium. The proceedings have then been divided into three sections. Section I: Telescopes and instrumentation; Section II: Photometric research programmes; Section III: Spectroscopic research programmes. The diversity of topics within each of these sections indicated the extent to which small telescopes have (and can) contribute greatly to astronomical research. Dr J.A. Graham's summary of the symposium, which illustrates the opportunities available with small telescopes, concludes these proceedings. As in all symposia, the importance of the discussion following each paper was realised. The discussion was recorded on tape (and wherever possible on questions and answer sheets), transcribed and then edited."
The aim of this book is to bridge the gap between the pure instrumental physicist and the user of detectors and spectrometers. The essential parameters describing the performance of these devices are identified and the designs of a wide variety of practical instruments are illustrated working on topical problems. The author has spent 14 years designing and applying spectrometers in the visible and near infra-red domains predominantly to investigate gaseous nebulae. Most recently he has designed for instance a large (15 x IS-in.) Ha interference filter for the SRC, 48-in. Schmidt camera, insect-eye Fabry-Perot spectrographs, image tube filter cameras, a SISAM monochromator, a three-beam Fabry-Perot monochromator (collaboratively) for the ISO-in. Anglo-Australian telescope and a two-etalon PEPSIOS type monochromator. Consequently emphasis in this book is placed on devices useful from the ultra-violet to the infra-red. Likewise many of the illustrations are drawn from astronomy. However most of the ideas that are presented invariably have applications in other branches of science and wavelength domains.
This comprehensive guide to Bayesian methods in astronomy enables hands-on work by supplying complete R, JAGS, Python, and Stan code, to use directly or to adapt. It begins by examining the normal model from both frequentist and Bayesian perspectives and then progresses to a full range of Bayesian generalized linear and mixed or hierarchical models, as well as additional types of models such as ABC and INLA. The book provides code that is largely unavailable elsewhere and includes details on interpreting and evaluating Bayesian models. Initial discussions offer models in synthetic form so that readers can easily adapt them to their own data; later the models are applied to real astronomical data. The consistent focus is on hands-on modeling, analysis of data, and interpretations that address scientific questions. A must-have for astronomers, its concrete approach will also be attractive to researchers in the sciences more generally.
In diesem kompetent geschriebenen Lehrbuch wird, ausgehend von der Beschreibung unserer Milchstrasse, die Astronomie der Galaxien und ihrergrossraumigen Verteilungeingehend dargestellt und schliesslich im kosmologischen Kontext diskutiert. Aufbauend auf eine Einfuhrung in die moderne beobachtende und theoretische Kosmologie wird die Entstehung von Strukturen und astronomischen Objekten im fruhen Universum besprochen. Peter Schneiders Einfuhrung in die extragalaktische Astronomie und Kosmologie fullt eine Lucke im Angebotastronomischer Lehrbucher, indem es Studenten mit Grundkenntnissen in Astronomie und Astrophysik die Moglichkeit bietet, sich umfassend in diese faszinierenden und aktuellen Gebiete der Astronomie einzuarbeiten."
Bayesian methods are being increasingly employed in many different areas of research in the physical sciences. In astrophysics, models are used to make predictions to be compared to observations. These observations offer information that is incomplete and uncertain, so the comparison has to be pursued by following a probabilistic approach. With contributions from leading experts, this volume covers the foundations of Bayesian inference, a description of computational methods, and recent results from their application to areas such as exoplanet detection and characterisation, image reconstruction, and cosmology. It appeals to both young researchers seeking to learn about Bayesian methods as well as to astronomers wishing to incorporate these approaches in their research areas. It provides the next generation of researchers with the tools of modern data analysis that are already becoming standard in current astrophysical research.
This didactic book uses a data-driven approach to connect measurements made by plasma instruments to the real world. This approach makes full use of the instruments' capability and examines the data at the most detailed level an experiment can provide. Students using this approach will learn what instruments can measure, and working with real-world data will pave their way to models consistent with these observations. While conceived as a teaching tool, the book contains a considerable amount of new information. It emphasizes recent results, such as particle measurements made from the Cluster ion experiment, explores the consequences of new discoveries, and evaluates new trends or techniques in the field. At the same time, the author ensures that the physical concepts used to interpret the data are general and widely applicable. The topics included help readers understand basic problems fundamental to space plasma physics. Some are appearing for the first time in a space physics textbook. Others present different perspectives and interpretations of old problems and models that were previously considered incontestable. This book is essential reading for graduate students in space plasma physics, and a useful reference for the broader astrophysics community.
A valuable reference for students and professionals in the field of deep space navigation Drawing on fundamental principles and practices developed during decades of deep space exploration at the California Institute of Technology’s Jet Propulsion Laboratory (JPL), this book documents the formation of program Regres of JPL’s Orbit Determination Program (ODP). Program Regres calculates the computed values of observed quantities (e.g., Doppler and range observables) obtained at the tracking stations of the Deep Space Network, and also calculates media corrections for the computed values of the observable and partial derivatives of the computed values of the observables with respect to the solve-for-parameter vector-q. The ODP or any other program which uses its formulation can be used to navigate a spacecraft anywhere in the solar system. A publication of the JPL Deep Space Communications and Navigation System Center of Excellence (DESCANSO), Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation is an invaluable resource for graduate students of celestial mechanics or astrodynamics because it:
The Deep Space Communications and Navigation Series is authored by scientists and engineers with extensive experience in astronautics, communications, and related fields. It lays the foundation for innovation in the areas of deep space navigation and communications by conveying state-of-the-art knowledge in key technologies.
This book is a history of the development of mathematical astronomy in China, from the late third century BCE, to the early 3rd century CE - a period often referred to as 'early imperial China'. It narrates the changes in ways of understanding the movements of the heavens and the heavenly bodies that took place during those four and a half centuries, and tells the stories of the institutions and individuals involved in those changes. It gives clear explanations of technical practice in observation, instrumentation, and calculation, and the steady accumulation of data over many years - but it centres on the activity of the individual human beings who observed the heavens, recorded what they saw, and made calculations to analyse and eventually make predictions about the motions of the celestial bodies. It is these individuals, their observations, their calculations, and the words they left to us that provide the narrative thread that runs through this work. Throughout the book, the author gives clear translations of original material that allow the reader direct access to what the people in this book said about themselves and what they tried to do.
"Experiments in Reduced Gravity: Sediment Settling on Mars" is the first book to be published that reflects experiments conducted on Martian geomorphology in reduced gravity. This brief yet important book on sediment experiments assesses
the theoretical and empirical foundation of the models used to
analyze the increasing information we have on the past geography on
Mars. The book also evaluates the need to develop new methods for
analyzing new information by providing a conceptual outline and a
case study on how experiments can be used to test current
theoretical considerations. The conceptual approach to identifying
the need for and role of experiments will be of interest to
planetary scientists and geoscientists not necessarily involved
with Mars, but those using experiments in their research who can
apply the book s concepts.
Free yourself from cosmological tyranny! Everything started in a Big Bang? Invisible dark matter? Black holes? Why accept such a weird cosmos? For all those who wonder about this bizarre universe, and those who want to overthrow the Big Bang, this handbook gives you 'just the facts': the observations that have shaped these ideas and theories. While the Big Bang holds the attention of scientists, it isn't perfect. The authors pull back the curtains, and show how cosmology really works. With this, you will know your enemy, cosmic revolutionary - arm yourself for the scientific arena where ideas must fight for survival! This uniquely-framed tour of modern cosmology gives a deeper understanding of the inner workings of this fascinating field. The portrait painted is realistic and raw, not idealized and airbrushed - it is science in all its messy detail, which doesn't pretend to have all the answers.
This book is aimed at students making the transition from a first course on general relativity to a specialized subfield. It presents a variety of topics under the general headings of gravitational waves in vacuo and in a cosmological setting, equations of motion, and black holes, all having a clear physical relevance and a strong emphasis on space-time geometry. Each chapter could be used as a basis for an early postgraduate project for those who are exploring avenues into research in general relativity and who have already accumulated the required technical knowledge. The presentation of each chapter is research monograph style, rather than text book style, in order to impress on interested students the need to present their research in a clear and concise format. Students with advanced preparation in general relativity theory might find a treasure trove here.
This book introduces the modern field of 3+1 numerical relativity. The book has been written in a way as to be as self-contained as possible, and only assumes a basic knowledge of special relativity. Starting from a brief introduction to general relativity, it discusses the different concepts and tools necessary for the fully consistent numerical simulation of relativistic astrophysical systems, with strong and dynamical gravitational fields. Among the topics discussed in detail are the following: the initial data problem, hyperbolic reductions of the field equations, gauge conditions, the evolution of black hole space-times, relativistic hydrodynamics, gravitational wave extraction and numerical methods. There is also a final chapter with examples of some simple numerical space-times. The book is aimed at both graduate students and researchers in physics and astrophysics, and at those interested in relativistic astrophysics.
The development of quantum technologies has seen a tremendous upsurge in recent years, and the theory of Bell nonlocality has been key in making these technologies possible. Bell nonlocality is one of the most striking discoveries triggered by quantum theory. It states that in some situations, measurements of physical systems do not reveal pre-existing properties; rather, the property is created by the measurement itself. In 1964, John Bell demonstrated that the predictions of quantum theory are incompatible with the assumption that outcomes are predetermined. This phenomenon has been observed beyond any doubt in the last decades. It is an observation that is here to stay, even if quantum theory were to be replaced in the future. Besides having fundamental implications, nonlocality is so specific that it can be used to develop and certify reliable quantum devices. This book is a logical, rather than historical, presentation of nonlocality and its applications. Part 1 opens with a survey of the meaning of Bell nonlocality and its interpretations, then delves into the mathematical formalisation of this phenomenon, and finally into its manifestations in quantum theory. Part 2 is devoted to the possibility of using the evidence of nonlocality for certification of devices for quantum technologies. Part 3 explores some of the extensions and consequences of nonlocality for the foundations of physics.
This book collects together the lecture courses and seminars given at the Les Houches Summer School 2008 on Long-Range Interacting Systems. Leading scientists in different fields of mathematics and physics present their views on this fast growing and interdisciplinary field of research, by venturing upon fundamental problems of probability, transport theory, equilibrium and non-equilibrium statistical mechanics, condensed matter physics, astrophysics and cosmology, physics of plasmas, and hydrodynamics. The thermodynamic and dynamical properties of systems with long-range interactions were poorly understood until a few years ago. Substantial progress has been made only recently by realizing that the lack of additivity induced by long-range interactions does not hinder the development of a consistent thermodynamic formalism. This book reviews the state-of-the-art developments in this field and provides an essential background to future studies. All chapters are written from a pedagogical perspective, making the book accessible to masters and PhD students and all researchers wishing to enter this field.
This volume of original articles, collected papers and commentaries by contemporary scholars illustrates the work of Tullio Regge, a giant in the panorama of theoretical physics in the second half of the 20th century, probably the most influential Italian physicist after Enrico Fermi. His brilliant contributions to quantum theory and to general relativity have marked significant turning points in the development of scientific knowledge: Regge poles, Regge behaviour, Regge calculus and his geometric approach to general relativity and its extensions, and they continue to have a profound impact on the work of the large theoretical community today. Moreover, his public engagement for the dissemination of scientific culture, his mastering of multimedia technology for outreach and play, and his support for important social causes such as the fight against pseudosciences and the rights of the disabled make him a charismatic character across time, space and disciplines.
This book introduces the modern field of 3+1 numerical relativity. The book has been written in a way as to be as self-contained as possible, and only assumes a basic knowledge of special relativity. Starting from a brief introduction to general relativity, it discusses the different concepts and tools necessary for the fully consistent numerical simulation of relativistic astrophysical systems, with strong and dynamical gravitational fields. Among the topics discussed in detail are the following; the initial data problem, hyperbolic reductions of the field equations, guage conditions, the evolution of black hole space-times, relativistic hydrodynamics, gravitational wave extraction and numerical methods. There is also a final chapter with examples of some simple numerical space-times. The book is aimed at both graduate students and researchers in physics and astrophysics, and at those interested in relativistic astrophysics.
This second volume of a comprehensive three-volume work on theoretical astrophysics deals with stellar physics. After reviewing the key observational results and nomenclature used in stellar astronomy, the book develops a solid understanding of central concepts including stellar structure and evolution, the physics of stellar remnants, pulsars, binary stars, the sun and planetary systems, interstellar medium and globular clusters. Throughout, the reader's comprehension is developed and tested with more than seventy-five exercises. This indispensable volume will allow graduate students to master the material sufficiently to read and engage in research with heightened understanding. It can be used alone or in conjunction with Volume 1, which covers a wide range of astrophysical processes, and the forthcoming Volume 3, on galaxies and cosmology.
The field of astrometry, the precise measurement of the positions, distances and motions of astronomical objects, has been revolutionized in recent years. As we enter the high-precision era, it will play an increasingly important role in all areas of astronomy, astrophysics and cosmology. This edited text starts by looking at the opportunities and challenges facing astrometry in the twenty-first century, from space and ground. The new formalisms of relativity required to take advantage of micro-arcsecond astrometry are then discussed, before the reader is guided through the basic methods required to transform our observations from detected photons to the celestial sphere. The final section of the text shows how a variety of astronomical problems can be solved using astrometric methods. Bringing together work from a broad range of experts in the field, this is the most complete textbook on observational astrometry and is ideal for graduate students and researchers alike.
This textbook gives an introduction to fluid dynamics based on flows for which analytical solutions exist, like individual vortices, vortex streets, vortex sheets, accretions disks, wakes, jets, cavities, shallow water waves, bores, tides, linear and non-linear free-surface waves, capillary waves, internal gravity waves and shocks. Advanced mathematical techniques ("calculus") are introduced and applied to obtain these solutions, mostly from complex function theory (Schwarz-Christoffel theorem and Wiener-Hopf technique), exterior calculus, singularity theory, asymptotic analysis, the theory of linear and nonlinear integral equations and the theory of characteristics. Many of the derivations, so far contained only in research journals, are made available here to a wider public.
This is the first monograph to describe the historical development of ideas concerning the plasmasphere by the pioneering researchers themselves. The plasmasphere is a cold thermal plasma cloud encircling the Earth, terminating abruptly at a radial distance of 30,000 km over a sharp discontinuity known as the plasmapause. The volume commences with an account of the difficulties met in USSR by Gringauz to publish his early discoveries from Soviet rocket measurements, and the contemporaneous breakthroughs by Carpenter in the USA from ground-based whistler measurements. The authors then update our picture of the plasmasphere by presenting experimental and observational results of the past three decades, and mathematical and physical theories proposed to explain its formation. The volume will be invaluable for researchers in space physics, and will also appeal to those interested in the history of science.
Based on a Simons Symposium held in 2018, the proceedings in this volume focus on the theoretical, numerical, and observational quest for dark matter in the universe. Present ground-based and satellite searches have so far severely constrained the long-proposed theoretical models for dark matter. Nevertheless, there is continuously growing astrophysical and cosmological evidence for its existence. To address present and future developments in the field, novel ideas, theories, and approaches are called for. The symposium gathered together a new generation of experts pursuing innovative, more complex theories of dark matter than previously considered.This is being done hand in hand with experts in numerical astrophysical simulations and observational techniques-all paramount for deciphering the nature of dark matter. The proceedings volume provides coverage of the most advanced stage of understanding dark matter in various new frameworks. The collection will be useful for graduate students, postdocs, and investigators interested in cutting-edge research on one of the biggest mysteries of our universe. |
You may like...
Galileo Galilei - At the Threshold of…
Wolfgang W. Osterhage
Hardcover
R2,016
Discovery Miles 20 160
The XVIII International Conference on…
Domenico Elia, Giuseppe E. Bruno, …
Hardcover
R4,308
Discovery Miles 43 080
Orbits - 2nd Order Singularity-free…
Guochang Xu, Jia Xu
Hardcover
The Cosmic Microwave Background…
Julio C. Fabris, Oliver Piattella, …
Hardcover
R6,990
Discovery Miles 69 900
Explaining Lithium Enriched Red Giant…
Claudia Aguilera-Gomez
Hardcover
R2,789
Discovery Miles 27 890
|