![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time > Theoretical & mathematical astronomy
This book provides a pedagogical introduction to the rapidly growing field of reheating after inflation. It begins with a brief review of the inflationary paradigm and a motivation for why the reheating of the universe is an integral part of inflationary cosmology. It then goes on to survey different aspects of reheating in a chronological manner, starting from the young, empty and cold universe at the end of inflation, and going all the way to the hot and thermal universe at the beginning of the Big Bang nucleosynthesis epoch. Different particle production mechanisms are considered with a focus on the non-perturbative excitation of scalar fields at the beginning of reheating (fermionic and vector fields are also discussed). This is followed by a review of the subsequent non-linear dynamical processes, such as soliton formation and relativistic turbulence. Various thermalization processes are also discussed. High energy physics embeddings of phenomenological models as well as observational implications of reheating such as gravitational waves generation and imprints on the cosmic microwave background are also covered.
In this clearly written work, Robert Wald provides the general reader with an elementary but scientifically sound introduction to such fascinating topics as the theory of the big-bang origin of the universe and the nature of black holes. Wald has now revised and updated the highly regarded first edition of Space, Time, and Gravity, taking into account recent developments in black hole physics, astrophysics, and cosmology.
This book is the first thorough and overdue biography of one of the giants of science in the twentieth century, Jan Hendrik Oort. His fundamental contributions had a lasting effect on the development of our insight and a profound influence on the international organization and cooperation in his area of science and on the efforts and contribution of his native country. This book aims at describing Oort's life and works in the context of the development of his branch of science and as a tribute to a great scientist in a broader sense. The astronomer Jan Hendrik Oort from the Netherlands was founder of studies of the structure and dynamics of the Milky Way Galaxy, initiator of radioastronomy and the European Southern Observatory, and an important contributor to many areas of astronomy, from the study of comets to the universe on the largest scales.
Modern computer power and high-precision observational data have greatly improved the reliability of meteoroid stream models. At present, scientific research calls for two kinds of models: precise ones for individual streams, and statistically averaged ones for Solar System dust distribution models. Thus, there is a wide field of study open to stream modellers. This brief describes step-by-step computer simulations of meteoroid stream formation and evolution. Detailed derivations of relevant formulae are given, along with plenty of helpful, digestible figures explaining the subtleties of the method. Each theoretical section ends with examples aimed to help readers practice and master the material. Most of the examples are based on the Geminid meteoroid stream model, which has been developed by the author in the last 30 years. The book is intended for researchers interested in meteor astronomy and mathematical modelling, and it is also accessible to physics and astrophysics students.
Unlike most traditional introductory textbooks on relativity and cosmology that answer questions like "Does accelerated expansion pull our bodies apart?", "Does the presence of dark matter affect the classical tests of general relativity?" in a qualitative manner, the present text is intended as a foundation, enabling students to read and understand the textbooks and many of the scientific papers on the subject. And, above all, the readers are taught and encouraged to do their own calculations, check the numbers and answer the above and other questions regarding the most exciting discoveries and theoretical developments in general relativistic cosmology, which have occurred since the early 1980s. In comparison to these intellectual benefits the text is short. In fact, its brevity without neglect of scope or mathematical accessibility of key points is rather unique. The authors connect the necessary mathematical concepts and their reward, i.e. the understanding of an important piece of modern physics, along the shortest path. The unavoidable mathematical concepts and tools are presented in as straightforward manner as possible. Even though the mathematics is not very difficult, it certainly is beneficial to know some statistical thermodynamics as well as some quantum mechanics. Thus the text is suitable for the upper undergraduate curriculum.
What are the mysterious numbers that unlock the secrets of the universe? In Fantastic Numbers and Where to Find Them, leading theoretical physicist and YouTube star Antonio Padilla takes us on an irreverent cosmic tour of nine of the most extraordinary numbers in physics. These include Graham's number, which is so large that if you thought about it in the wrong way, your head would collapse into a singularity; TREE(3), whose finite value could never be reached before the universe reset itself; and 10^{-120}, which measures the desperately unlikely balance of energy the universe needs to exist. . . Leading us down the rabbit hole to the inner workings of reality, Padilla demonstrates how these unusual numbers are the key to unlocking such mind-bending phenomena as black holes, entropy and the problem of the cosmological constant, which shows that our two best ways of understanding the universe contradict one another. Combining cutting-edge science with an entertaining cosmic quest, Fantastic Numbers and Where to Find Them is an electrifying, head-twisting guide to the most fundamental truths of the universe.
These lecture notes are intended for starting PhD students in theoretical physics who have a working knowledge of General Relativity. The four topics covered are: Surface charges as conserved quantities in theories of gravity; Classical and holographic features of three-dimensional Einstein gravity; Asymptotically flat spacetimes in four dimensions: BMS group and memory effects; The Kerr black hole: properties at extremality and quasi-normal mode ringing. Each topic starts with historical foundations and points to a few modern research directions.
This Brief presents in a self-contained, non-technical and illustrative fashion the state-of-the-art results and techniques for the dynamics of extremal black holes. Extremal black holes are, roughly speaking, either maximally rotating or maximally charged. Astronomical observations suggest that near-extremal (stellar or supermassive) black holes are ubiquitous in the universe. The book presents various recently discovered characteristic phenomena (such as the horizon instability) that have enhanced our understanding of the dynamics of extremal black holes. The topics should be of interest to pure mathematicians, theoretical physicists and astronomers. This book provides common ground for communication between these scientific communities.
This Festschrift dedicated to the 60th birth anniversary of Prof. Sandip K. Chakrabarti, a well-known Indian astrophysicist, presents a collection of contributions by about fifty scientists who work on diverse topics in contemporary astrophysics and space science including new and low-cost balloon borne experiments, planetary science, astrochemistry and the origin of life, ionospheric research and earthquake predictions, relativistic astrophysics around black holes, and finally, the observational signatures and radiative properties of compact objects. All the authors are well known scholars in their respective subject and are all PhD students of Prof. Sandip K. Chakrabarti. The book demonstrates a two-dimensional evolution of research areas triggered by Sandip Chakrabarti over the past few decades. The first dimension represents the evolution and diversification of Chakrabarti's own research in which new students were trained. A second dimension arises from the evolution of the research topics pursued by Chakrabarti's fifty odd doctoral students, many of whom have become renowned scientists in their own right, after starting with a certain subject under Chakrabarti and then migrating to completely new subjects with dexterity. The editors have compiled and edited the articles appropriately to some extent to suit the spirit of this Festschrift on the one hand and to keep balance in diverse topics on the other. Thus this volume also provides an overview for whosoever wishes to enter the important subjects of compact objects, astrochemistry, ionospheric science or space exploration in near space. New graduates, PhD scholars, teachers and researchers will benefit from this volume. Moreover it is a record of tremendous success of a school in a range of vast topics.
This book presents a study of the saturation of unstable f-modes (fundamental modes) due to low-order nonlinear mode coupling. Since their theoretical prediction in 1934, neutron stars have remained among the most challenging objects in the Universe. Gravitational waves emitted by unstable neutron star oscillations can be used to obtain information about their inner structure, that is, the equation of state of dense nuclear matter. After its initial growth phase, the instability is expected to saturate due to nonlinear effects. The saturation amplitude of the unstable mode determines the detectability of the generated gravitational-wave signal, but also affects the evolution of the neutron star. The study shows that the unstable (parent) mode resonantly couples to pairs of stable (daughter) modes, which drain the parent's energy and make it saturate via a mechanism called parametric resonance instability. Further, it calculates the saturation amplitude of the most unstable f-mode multipoles throughout their so-called instability windows.
This didactic book uses a data-driven approach to connect measurements made by plasma instruments to the real world. This approach makes full use of the instruments' capability and examines the data at the most detailed level an experiment can provide. Students using this approach will learn what instruments can measure, and working with real-world data will pave their way to models consistent with these observations. While conceived as a teaching tool, the book contains a considerable amount of new information. It emphasizes recent results, such as particle measurements made from the Cluster ion experiment, explores the consequences of new discoveries, and evaluates new trends or techniques in the field. At the same time, the author ensures that the physical concepts used to interpret the data are general and widely applicable. The topics included help readers understand basic problems fundamental to space plasma physics. Some are appearing for the first time in a space physics textbook. Others present different perspectives and interpretations of old problems and models that were previously considered incontestable. This book is essential reading for graduate students in space plasma physics, and a useful reference for the broader astrophysics community.
This book is devoted to the study of certain integral representations for Neumann, Kapteyn, Schloemilch, Dini and Fourier series of Bessel and other special functions, such as Struve and von Lommel functions. The aim is also to find the coefficients of the Neumann and Kapteyn series, as well as closed-form expressions and summation formulas for the series of Bessel functions considered. Some integral representations are deduced using techniques from the theory of differential equations. The text is aimed at a mathematical audience, including graduate students and those in the scientific community who are interested in a new perspective on Fourier-Bessel series, and their manifold and polyvalent applications, mainly in general classical analysis, applied mathematics and mathematical physics.
The articles included in this Volume represent a broad and highly qualified view on the present state of general relativity, quantum gravity, and their cosmological and astrophysical implications. As such, it may serve as a valuable source of knowledge and inspiration for experts in these fields, as well as an advanced source of information for young researchers. The occasion to gather together so many leading experts in the field was to celebrate the centenary of Einstein's stay in Prague in 1911-1912. It was in fact during his stay in Prague that Einstein started in earnest to develop his ideas about general relativity that fully developed in his paper in 1915. Approaching soon the centenary of his famous paper, this volume offers a precious overview of the path done by the scientific community in this intriguing and vibrant field in the last century, defining the challenges of the next 100 years. The content is divided into four broad parts: (i) Gravity and Prague, (ii) Classical General Relativity, (iii) Cosmology and Quantum Gravity, and (iv) Numerical Relativity and Relativistic Astrophysics.
Relativistic kinetic theory has widespread application in astrophysics and cosmology. The interest has grown in recent years as experimentalists are now able to make reliable measurements on physical systems where relativistic effects are no longer negligible. This ambitious monograph is divided into three parts. It presents the basic ideas and concepts of this theory, equations and methods, including derivation of kinetic equations from the relativistic BBGKY hierarchy and discussion of the relation between kinetic and hydrodynamic levels of description. The second part introduces elements of computational physics with special emphasis on numerical integration of Boltzmann equations and related approaches, as well as multi-component hydrodynamics. The third part presents an overview of applications ranging from covariant theory of plasma response, thermalization of relativistic plasma, comptonization in static and moving media to kinetics of self-gravitating systems, cosmological structure formation and neutrino emission during the gravitational collapse.
Celestial mechanics is the branch of mathematical astronomy devoted to studying the motions of celestial bodies subject to the Newtonian law of gravitation. This mathematical introductory textbook reveals that even the most basic question in celestial mechanics, the Kepler problem, leads to a cornucopia of geometric concepts: conformal and projective transformations, spherical and hyperbolic geometry, notions of curvature, and the topology of geodesic flows. For advanced undergraduate and beginning graduate students, this book explores the geometric concepts underlying celestial mechanics and is an ideal companion for introductory courses. The focus on the history of geometric ideas makes it perfect supplementary reading for students in elementary geometry and topology. Numerous exercises, historical notes and an extensive bibliography provide all the contextual information required to gain a solid grounding in celestial mechanics.
Celestial mechanics is the branch of mathematical astronomy devoted to studying the motions of celestial bodies subject to the Newtonian law of gravitation. This mathematical introductory textbook reveals that even the most basic question in celestial mechanics, the Kepler problem, leads to a cornucopia of geometric concepts: conformal and projective transformations, spherical and hyperbolic geometry, notions of curvature, and the topology of geodesic flows. For advanced undergraduate and beginning graduate students, this book explores the geometric concepts underlying celestial mechanics and is an ideal companion for introductory courses. The focus on the history of geometric ideas makes it perfect supplementary reading for students in elementary geometry and topology. Numerous exercises, historical notes and an extensive bibliography provide all the contextual information required to gain a solid grounding in celestial mechanics.
The Finnish mathematician and astronomer Anders Johan Lexell (1740-1784) was a long-time close collaborator as well as the academic successor of Leonhard Euler at the Imperial Academy of Sciences in Saint Petersburg. Lexell was initially invited by Euler from his native town of Abo (Turku) in Finland to Saint Petersburg to assist in the mathematical processing of the astronomical data of the forthcoming transit of Venus of 1769. A few years later he became an ordinary member of the Academy. This is the first-ever full-length biography devoted to Lexell and his prolific scientific output. His rich correspondence especially from his grand tour to Germany, France and England reveals him as a lucid observer of the intellectual landscape of enlightened Europe. In the skies, a comet, a minor planet and a crater on the Moon named after Lexell also perpetuate his memory.
Originally published in 1957, this book presents symposium number 4, organised by the International Astronomical Union, held on 25th-27th August 1955 at the Jodrell Bank Experimental Station of the University of Manchester. This volume contains all but two of the papers presented and one contribution, paper 16, has been added at the editor's request. Furthermore, 'many papers have been improved as a result of discussion at the symposium or by the inclusion of data not available in August 1955'. The papers are broad in scope and detailed; chapter titles include, 'Spectral line investigations', 'Galactic structure and statistical studies of point sources' and 'Meteors and planets'. Diagrams are included for reference throughout. This book will be of significant value to astronomy scholars as well as to anyone with an interest in physics, cosmology and the history of science.
This book is devoted to the problems that occur when attempting to understand and construct a concise representation of the original conditions, composition and dynamics of the evolution of the Earth-Moon system in the form in which it is seen today. This volume will perhaps contribute to a better understanding of what is necessary to research the dynamics of the Solar system.
This book addresses a fascinating set of questions in theoretical physics which will both entertain and enlighten all students, teachers and researchers and other physics aficionados. These range from Newtonian mechanics to quantum field theory and cover several puzzling issues that do not appear in standard textbooks. Some topics cover conceptual conundrums, the solutions to which lead to surprising insights; some correct popular misconceptions in the textbook discussion of certain topics; others illustrate deep connections between apparently unconnected domains of theoretical physics; and a few provide remarkably simple derivations of results which are not often appreciated. The connoisseur of theoretical physics will enjoy a feast of pleasant surprises skilfully prepared by an internationally acclaimed theoretical physicist. Each topic is introduced with proper background discussion and special effort is taken to make the discussion self-contained, clear and comprehensible to anyone with an undergraduate education in physics.
This book gathers the lecture notes of the 100th Les Houches Summer School, which was held in July 2013. These lectures represent a comprehensive pedagogical survey of the frontier of theoretical and observational cosmology just after the release of the first cosmological results of the Planck mission. The Cosmic Microwave Background is discussed as a possible window on the still unknown laws of physics at very high energy and as a backlight for studying the late-time Universe. Other lectures highlight connections of fundamental physics with other areas of cosmology and astrophysics, the successes and fundamental puzzles of the inflationary paradigm of cosmic beginning, the themes of dark energy and dark matter, and the theoretical developments and observational probes that will shed light on these cosmic conundrums in the years to come.
A trio of editors [Professors from Austria, Germany and Israel] present Life on Earth and other Planetary Bodies. The contributors are from twenty various countries and present their research on life here as well as the possibility for extraterrestrial life. This volume covers concepts such as life's origin, hypothesis of Panspermia and of life possibility in the Cosmos. The topic of extraterrestrial life is currently 'hot' and the object of several congresses and conferences. While the diversity of "normal" biota is well known, life on the edge of the extremophiles is more limited and less distributed. Other subjects discussed are Astrobiology with the frozen worlds of Mars, Europa and Titan where extant or extinct microbial life may exist in subsurface oceans; conditions on icy Mars with its saline, alkaline, and liquid water which has been recently discovered; chances of habitable Earth-like [or the terrestrial analogues] exoplanets; and SETI's search for extraterrestrial Intelligence.
This book provides a completely revised and expanded version of the previous classic edition 'General Relativity and Relativistic Astrophysics'. In Part I the foundations of general relativity are thoroughly developed, while Part II is devoted to tests of general relativity and many of its applications. Binary pulsars - our best laboratories for general relativity - are studied in considerable detail. An introduction to gravitational lensing theory is included as well, so as to make the current literature on the subject accessible to readers. Considerable attention is devoted to the study of compact objects, especially to black holes. This includes a detailed derivation of the Kerr solution, Israel's proof of his uniqueness theorem, and a derivation of the basic laws of black hole physics. Part II ends with Witten's proof of the positive energy theorem, which is presented in detail, together with the required tools on spin structures and spinor analysis. In Part III, all of the differential geometric tools required are developed in detail. A great deal of effort went into refining and improving the text for the new edition. New material has been added, including a chapter on cosmology. The book addresses undergraduate and graduate students in physics, astrophysics and mathematics. It utilizes a very well structured approach, which should help it continue to be a standard work for a modern treatment of gravitational physics. The clear presentation of differential geometry also makes it useful for work on string theory and other fields of physics, classical as well as quantum.
"The bubbles were swirling all around me, massaging my body. As I luxuriated in this fantastic bath, .... I gasped as I realized that these were miniature galaxies bringing the whole Cosmos into my bathtub..." Alfie is back. And so are George and other characters of the author s previous book "Einstein s Enigma or Black Holes in My Bubble Bath." The present book, "Universe Unveiled - The Cosmos in My Bubble," can be considered a sequel to the previous one. It is nontechnical and descriptive. The scientific content is presented through the discussions between Alfie, the enlightened learner and George, professor of astrophysics. Fantasies, based on these discussions that cover scientific facts, are created by the magical bubble baths taken by Alfie. The cosmic journey begins with ancient astronomers, such as Aristarchus and Ptolemy of Greece, Aryabhata from India, and Omar Khayyam from Persia. The foundations of the cosmos, essentially the solar system, are laid by the great scientists like Copernicus, Tycho Brahe, Kepler, Galileo, and finally Isaac Newton. This is followed by the realm of the stars with a description of stellar evolution and its three end-products, namely the white dwarfs, neutron stars, and black holes. The final phase of the cosmic journey begins with the large-scale structure of the Universe. From the early speculations of William Herschel, we move on to Harlow Shapley, the measurer of the Milky Way. The awesome vastness of the Universe is revealed by the remarkable observations of Edwin Hubble, while the strangest cosmic phenomenon of universal expansion is discovered by Hubble and his collaborator Milton Humason, the erstwhile mule driver. The theoretical basis of modern cosmology, the space-time picture of the general theory of relativity, is elucidated by Albert Einstein himself. The final chapters deal with the most modern developments such as the exact determination of the age of the Universe, dark matter, the acceleration of the universal expansion and dark energy. "Universe Unveiled "blends accurate science with philosophy, drama, humour and fantasy to create an exciting cosmic journey that reads like a novel and educates as it entertains."
From supernovae and gamma-ray bursts to the accelerating Universe, this is an exploration of the intellectual threads that lead to some of the most exciting ideas in modern astrophysics and cosmology. This fully updated second edition incorporates new material on binary stars, black holes, gamma-ray bursts, worm-holes, quantum gravity and string theory. It covers the origins of stars and their evolution, the mechanisms responsible for supernovae, and their progeny, neutron stars and black holes. It examines the theoretical ideas behind black holes and their manifestation in observational astronomy and presents neutron stars in all their variety known today. This book also covers the physics of the twentieth century, discussing quantum theory and Einstein's gravity, how these two theories collide, and the prospects for their reconciliation in the twenty-first century. This will be essential reading for undergraduate students in astronomy and astrophysics, and an excellent, accessible introduction for a wider audience. |
You may like...
Waste Treatment in the Process…
Lawrence K. Wang, Yung-Tse Hung, …
Hardcover
R6,389
Discovery Miles 63 890
Model-Based Engineering for Complex…
Peter Wilson, H. Alan Mantooth
Hardcover
8088 and 8086 Microprocessors, The…
Walter Triebel, Avtar Singh
Paperback
R2,724
Discovery Miles 27 240
8051 Microcontroller and Embedded…
Muhammad Mazidi, Janice Mazidi, …
Paperback
A C/OS-III for the Renesas RX62N
J Labrosse Jean, Kovalski Fabiano
Hardcover
R1,817
Discovery Miles 18 170
|