![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry > Thermochemistry & chemical thermodynamics
The renowned Oxford Chemistry Primers series, which provides focused introductions to a range of important topics in chemistry, has been refreshed and updated to suit the needs of today's students, lecturers, and postgraduate researchers. The rigorous, yet accessible, treatment of each subject area is ideal for those wanting a primer in a given topic to prepare them for more advanced study or research. Moreover, cutting-edge examples and applications throughout the texts show the relevance of the chemistry being described to current research and industry. This new edition of Thermodynamics of Chemical Processes is the only self-contained text to cover the thermodynamics of chemical processes at a level appropriate for undergraduates. Describing the basic principles which govern reactivity and phase equilibria in chemical systems, the text is written at the first year undergraduate level and contains a number of worked examples and problems to help students through this introductory material. It shows the application of the theory to disciplines such as biochemistry, materials science, environmental science, forensic and analytical sciences. This new edition places an emphasis on applying the principles and solving problems rather than on formal proof of theorems and detailed mathematical understanding. The ideas of enthalpy, internal energy and entropy are covered to lead into Gibbs free energy and how it can be used to correlate and predict the equilibrium position and properties of chemical reactions and multi-phase systems. Background mathematical ideas are introduced as needed, and the text includes material describing how the physicochemical principles can be applied to related areas such as materials science or biochemistry.
Advances in Chemical Engineering, Volume 58 in this long-running serial, highlights new advances in the field with this new volume presenting interesting and timely chapters written by an international board of authors.
Thermal Analysis and Thermodynamic Properties of Solids, Second Edition covers foundational principles and recent updates in the field, presenting an authoritative overview of theoretical knowledge and practical applications across several fields. Since the first edition of this book was published, large developments have occurred in the theoretical understanding of-and subsequent ability to assess and apply-principles of thermal analysis. Drawing on the knowledge of its expert author, this second edition provides fascinating insight for both new and experienced students, researchers, and industry professionals whose work is influenced or impacted by thermo analysis principles and tools. Part 1 provides a detailed introduction and guide to theoretical aspects of thermal analysis and the related impact of thermodynamics. Key terminology and concepts, the fundamentals of thermophysical examinations, thermostatics, equilibrium background, thermotics, reaction kinetics and models, thermokinetics and the exploitation of fractals are all discussed. Part 2 then goes on to discuss practical applications of this theoretical information to topics such as crystallization kinetics and glass states, thermodynamics in superconductor models, and climate change.
The Thermodynamics of Phase and Reaction Equilibria, Second Edition, provides a sound foundation for understanding abstract concepts of phase and reaction equilibria (e.g., partial molar Gibbs energy, fugacity, and activity), and shows how to apply these concepts to solve practical problems using numerous clear examples. Available computational software has made it possible for students to tackle realistic and challenging problems from industry. The second edition incorporates phase equilibrium problems dealing with nonideal mixtures containing more than two components and chemical reaction equilibrium problems involving multiple reactions. Computations are carried out with the help of Mathcad (R).
Thermodynamics: Principles Characterizing Physical and Chemical Processes, Fifth Edition is an authoritative guide on the physical and chemical processes based on classical thermodynamic principles. Emphasis is placed on fundamental principles, with a combination of theory and practice that demonstrates their applications in a variety of disciplines. Revised and updated to include new material and novel formulations, this edition features a new chapter on algebraic power laws and Fisher information theory, along with detailed updates on irreversible phenomena, Landau theory, self-assembly, Caratheodory's theorem, and the effects of externally applied fields. Drawing on the experience of its expert author, this book is a useful tool for both graduate students, professional chemists, and physicists who wish to acquire a more sophisticated overview of thermodynamics and related subject matter.
In each generation, scientists must redefine their fields: abstracting, simplifying and distilling the previous standard topics to make room for new advances and methods. Sethna's book takes this step for statistical mechanics - a field rooted in physics and chemistry whose ideas and methods are now central to information theory, complexity, and modern biology. Aimed at advanced undergraduates and early graduate students in all of these fields, Sethna limits his main presentation to the topics that future mathematicians and biologists, as well as physicists and chemists, will find fascinating and central to their work. The amazing breadth of the field is reflected in the author's large supply of carefully crafted exercises, each an introduction to a whole field of study: everything from chaos through information theory to life at the end of the universe.
Containing the very latest information on all aspects of enthalpy and internal energy as related to fluids, this book brings all the information into one authoritative survey in this well-defined field of chemical thermodynamics. Written by acknowledged experts in their respective fields, each of the 26 chapters covers theory, experimental methods and techniques and results for all types of liquids and vapours. These properties are important in all branches of pure and applied thermodynamics and this vital source is an important contribution to the subject hopefully also providing key pointers for cross-fertilization between sub-areas.
Practical Chemical Thermodynamics for Geoscientists covers classical chemical thermodynamics and focuses on applications to practical problems in the geosciences, environmental sciences, and planetary sciences. This book will provide a strong theoretical foundation for students, while also proving beneficial for earth and planetary scientists seeking a review of thermodynamic principles and their application to a specific problem.
Thermodynamic Approaches in Engineering Systems responds to the need for a synthesizing volume that throws light upon the extensive field of thermodynamics from a chemical engineering perspective that applies basic ideas and key results from the field to chemical engineering problems. This book outlines and interprets the most valuable achievements in applied non-equilibrium thermodynamics obtained within the recent fifty years. It synthesizes nontrivial achievements of thermodynamics in important branches of chemical and biochemical engineering. Readers will gain an update on what has been achieved, what new research problems could be stated, and what kind of further studies should be developed within specialized research.
Traditionally, the teaching of phase equilibria emphasizes the relationships between the thermodynamic variables of each phase in equilibrium rather than its engineering applications. This book changes the focus from the use of thermodynamics relationships to compute phase equilibria to the design and control of the phase conditions that a process needs. "Phase Equilibrium Engineering" presents a systematic study and application of phase equilibrium tools to the development of chemical processes. The thermodynamic modeling of mixtures for process development, synthesis, simulation, design and optimization is analyzed. The relation between the mixture molecular properties, the selection of the thermodynamic model and the process technology that could be applied are discussed. A classification of mixtures, separation process, thermodynamic models and technologies is presented to guide the engineer in the world of separation processes. The phase condition required for a given reacting system is studied at subcritical and supercritical conditions. The four cardinal points of phase equilibrium engineering are:
the chemical plant or process, the laboratory, the modeling of
phase equilibria and the simulator. The harmonization of all these
components to obtain a better design or operation is the ultimate
goal of phase equilibrium engineering. Methodologies are discussed using relevant industrial examples The molecular nature and composition of the process mixture is given a key role in process decisions Phase equilibrium diagrams are used as a drawing board for process implementation
At the heart of many fields - physics, chemistry, engineering - lies thermodynamics. While this science plays a critical role in determining the boundary between what is and is not possible in the natural world, it occurs to many as an indecipherable black box, thus making the subject a challenge to learn. Two obstacles contribute to this situation, the first being the disconnect between the fundamental theories and the underlying physics and the second being the confusing concepts and terminologies involved with the theories. While one needn't confront either of these two obstacles to successfully use thermodynamics to solve real problems, overcoming both provides access to a greater intuitive sense of the problems and more confidence, more strength, and more creativity in solving them. This book offers an original perspective on thermodynamic science and history based on the three approaches of a practicing engineer, academician, and historian. The book synthesises and gathers into one accessible volume a strategic range of foundational topics involving the atomic theory, energy, entropy, and the laws of thermodynamics.
This book offers advanced students, in 7 volumes, successively characterization tools phases, the study of all types of phase, liquid, gas and solid, pure or multi-component, process engineering, chemical and electrochemical equilibria, the properties of surfaces and phases of small sizes. Macroscopic and microscopic models are in turn covered with a constant correlation between the two scales. Particular attention is given to the rigor of mathematical developments. This book focuses on solid phases.
Free radicals are used as reactive intermediates in a wide range of organic syntheses as well as playing an important role in biological systems and industrial processes. Free radical chemistry is a rapidly developing area, with applications not only in chemistry but also in processes related to the environment, biology, drug research and medicine. General Aspects of the Chemistry of Radicals is an introductory book, discussing methods of formation and detection of free radicals, the rate of their reactions and their thermochemistry. The book closely examines the reactivity of free radical reactions, rate constants and temperature dependence, important in predicting the behaviour of yet unstudied systems and validating reaction mechanisms. General Aspects of the Chemistry of Radicals is written for researchers working in environmental and material sciences, organic, inorganic and physical organic chemistry. It will also be of interest to biochemists and molecular biologists working with the effects of free radicals on living systems.
The first edition of this classic book remains one of the very few introductory books covering both theoretical and practical aspects of thermal analysis (TA). This new edition includes a much enlarged section on MDSC, in which the instrument is described and a critical appraisal of the technique presented. Other additions include new sections on rate-controlled TGA, OTTER, and Specific Heat Spectroscopy, and a thoroughly updated section on X-Ray DSC. This very practical book is a must for people who use thermal analysis techniques in their everyday work. "An excellent introductory text" — Review of 1st Edition.
E = mc2 and the Periodic Table . . . RELATIVISTIC EFFECTS IN CHEMISTRY This century's most famous equation, Einstein's special theory of relativity, transformed our comprehension of the nature of time and matter. Today, making use of the theory in a relativistic analysis of heavy molecules, that is, computing the properties and nature of electrons, is the work of chemists intent on exploring the mysteries of minute particles. The first work of its kind, Relativistic Effects in Chemistry details the computational and analytical methods used in studying the relativistic effects in chemical bonding as well as the spectroscopic properties of molecules containing very heavy atoms. The second of two independent volumes, Part B: Applications contains specific experimental and theoretical results on the electronic states of molecules containing very heavy atoms as well as their spectroscopic properties and electronic structures. The first one-volume catalog of comprehensive computational results, Part B details:
An extraordinary new examination of Periodic Table elements, Part B of Relativistic Effects in Chemistry is also evidence of the enduring influence of Einstein's revolutionary theory.
As the title suggests, this unique book describes the synthesis, structure and properties of the polyamide family known by the common term n-nylon. Each nylon from n=1 to n=22 is discussed in detail with descriptions of the preparation of monomers, various synthetic approaches to the polymerization, structure and crystallisation of polymers and both their fundamental properties and important technological properties. It treats the structure and properties from two perspectives, namely the effect of the aliphatic chain length between amide groups and the effects of the rigidity or flexibility of the main chain Whilst intended as a reference work for all polymer scientists, in academia and industry, working with nylons, polyamide and condensation polymers, n-Nylons will also be appreciated by post-graduate students of polymer science and engineering. Each self-contained chapter can be read individually and is extensively referenced.
From the basics of thermodynamics to solutions for modern dynamical problems —the complete beginner's guide to statistical mechanics. Unlike most books on statistical mechanics, this one is written for advanced students in chemistry, chemical engineering, biophysics, and related fields. It targets readers with no prior exposure to statistical mechanics and provides a complete introduction to all the important principles, concepts, and equations, while maintaining a level of mathematical sophistication that most advanced chemistry students will find manageable. The emphasis is on finding solutions to common problems in chemistry. Topics covered include:
Clearly written, and with a minimum of theory, Statistical Mechanics for Chemists takes you step by step through mathematical manipulations and explains the physical and chemical bases for each procedure. It is a valuable resource for advanced students in chemistry, chemical engineering, biophysics, and related fields.
A much-needed expansion of traditional chemical thermodynamic
concepts--essential reading for today's advanced students and
research professionals
Introduction to the Technology of Explosives Paul W. Cooper and Stanley R. Kurowski Introduction to the Technology of Explosives is a clear and concise survey of the technologies and physical processes involved in explosive phenomena. The book is intended to provide the worker new to the field with sufficient background to understand problems that may arise and to interact intelligently with specialists in the field. The book covers the fundamentals of the chemistry of explosives; the mechanics of burning; sound, shock, and detonation; initiation and initiators; scaling in design and analysis; and off-the-shelf explosive devices. It provides the basic calculational skills needed to solve simple, first-order engineering design problems, and emphasizes the crucial importance of safety considerations. The book contains a broad range of data on explosive materials, and their properties and behavior, along with extensive lists of useful references. Example problems with solutions are provided in each technical area, as are descriptions and analysis of a wide variety of explosive devices. The book concludes with a thorough and comprehensive description of regulatory requirements for the classification, transportation, and storage of explosives, and an extensive guide to explosives safety in plant and test facilities. This book will be of interest to explosives technicians and engineers, government regulators, crime and accident scene investigators, and instructors in military, police, and FBI bomb schools.
John Wiley & Sons, Inc. is proud to announce an important new series of textbooks -- The MIT Series in Materials Science and Engineering. In response to the growing economic and technological importance of polymers, ceramics, and semi-conductors, many materials science and engineering departments are changing and expanding their curricula. The advent of new courses calls for the development of new textbooks that teach the principles of materials science and engineering as they apply to all the classes of materials. The MIT Series in Materials Science and Engineering is designed to fill the needs of this changing curriculum. Based on the undergraduate curriculum of the MIT Department of Materials Science and Engineering, the series will include textbooks for the core courses in the field as well as texts for courses in specific material classes. The first three textbooks in the series will be: Thermodynamics of Materials, Vol. I, by David Ragone (0-471-30885-4) Thermodynamics of Materials, VoL. II, by David Ragone (0-471-30886-2) Physical Ceramics: Principles for Ceramics Science and Engineering, by Yet-Ming Chiang, Dunbar Birnie III, and W. David Kingery (0-471-59873-9)
This book is the first to detail the chemical changes that occur in deforming materials subjected to unequal compressions. While thermodynamics provides, at the macroscopic level, an excellent means of understanding and predicting the behavior of materials in equilibrium and non-equilibrium states, much less is understood about nonhydrostatic stress and interdiffusion at the chemical level. Little is known, for example, about the chemistry of a state resulting from a cylinder of deforming material being more strongly compressed along its length than radially, a state of non-equilibrium that remains no matter how ideal the cylinder's condition in other respects. M. Brian Bayly here provides the outline of a comprehensive approach to gaining a simplified and unified understanding of such phenomena. The author's perspective differs from those commonly found in the technical literature in that he emphasizes two little-used equations that allow for a description and clarification of viscous deformation at the chemical level. Written at a level that will be accessible to many non-specialists, this book requires only a fundamental understanding of elementary mathematics, the nonhydrostatic stress state, and chemical potential. Geochemists, petrologists, structural geologists, and materials scientists will find Chemical Change in Deforming Materials interesting and useful.
Mass and Density Determinations (R. Davis & W. Koch). Pressure and Vacuum Measurements (C. Tilford). Experimental Methods for Studying Diffusion in Gases, Liquids, and Solids (P. Dunlop, et al.). Determination of Solubility (D. Wyatt & L. Grady). Viscosity and Its Measurements (J. Greener). Temperature Measurement with Application to Phase Equilibria Studies (J. Ott & J. Goates). Calorimetry (J. Oscarson & R. Izatt). Differential Thermal Methods (J. Boerio-Goates & J. Callanan). Index.
The fundamental principles of classic thermodynamics as they apply in science and engineering are illustrated here in numerous, fully worked out examples. Equally valuable at undergraduate and first-year graduate levels, this powerful study tool takes students from fundamental laws to the behavior of PVT systems, to the treatment of flow processes, the basics of chemical thermodynamics and more. Hundreds of review problems with answers speed comprehension and reinforce learning.
Comprising two volumes this work provides a particularly comprehensive account of the development of kinetic theory and statistical mechanics up to the beginning of the 20th century. The author's historical researches go far beyond any other books on the subject, filling in many more details and putting the history of kinetic theory in the context of 19th century scientific and intellectual history. In the course of detailed examination of the sources, both published and unpublished, the author throws much new light on the dynamics of scientific change, and refutes some generally accepted ideas about historical events. In one section of the work, he demonstrates the use of a kind of historical document which has rarely, if ever, been exploited by historians of science, namely, referees' reports. The work is primarily directed towards physicists, but as it is not only concerned with technical aspects of the history of physics but also deals with cultural and philosophical connections, it will also appeal to historians of science and philosophers. Book 2 is completed by an unusually comprehensive bibliography.
This groundbreaking book contains a broad yet detailed coverage of the major aspects of fire engineering. As would be expected, such matters as fire extinguishers, flame-retardants and fire-fighting feature centrally, with descriptions, from the functional point of view, of fire appliances from selected manufacturers around the world. There is coverage of selected accidental fires, both recent ones and those which have been on record for many years as being amongst the most serious in terms of loss of life. Social and political aspects of fire engineering also feature in the book, for example in accounts of fires in countries where buildings are sub-standard in safety terms and fire services are unreliable. Fire safety products are an integral part of the subject and improvements in fire safety have to a considerable degree been due to development work by manufacturers and trade names therefore feature in the book where applicable. Scientific and engineering details of the products have been obtained and re-expressed in broad terms. The author has paid close attention to the underlying physics and chemistry and some of the topics are complemented by calculations. |
![]() ![]() You may like...
|