![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Chemistry > Physical chemistry > Thermochemistry & chemical thermodynamics
Hydrodynamics, Mass and Heat Transfer in Chemical Engineering contains a concise and systematic exposition of fundamental problems of hydrodynamics, heat and mass transfer, and physicochemical hydrodynamics, which constitute the theoretical basis of chemical engineering in science. Areas covered include: fluid flows; processes of chemical engineering; mass and heat transfer in plane channels, tubes and fluid films; problems of mass and heat transfer; the motion and mass exchange of power-law and viscoplastic fluids through tubes, channels, and films; and the basic concepts and properties of very specific technological media, namely foam systems. Topics are arranged in increasing order of difficulty, with each section beginning with a brief physical and mathematical statement of the problem considered, followed by final results, usually given for the desired variables in the form of final relationships and tables.
This book provides an introduction to the essentials of relativistic effects in quantum chemistry, and a reference work that collects all the major developments in this field. It is designed for the graduate student and the computational chemist with a good background in nonrelativistic theory. In addition to explaining the necessary theory in detail, at a level that the non-expert and the student should readily be able to follow, the book discusses the implementation of the theory and practicalities of its use in calculations. After a brief introduction to classical relativity and electromagnetism, the Dirac equation is presented, and its symmetry, atomic solutions, and interpretation are explored. Four-component molecular methods are then developed: self-consistent field theory and the use of basis sets, double-group and time-reversal symmetry, correlation methods, molecular properties, and an overview of relativistic density functional theory. The emphases in this section are on the basics of relativistic theory and how relativistic theory differs from nonrelativistic theory. Approximate methods are treated next, starting with spin separation in the Dirac equation, and proceeding to the Foldy-Wouthuysen, Douglas-Kroll, and related transformations, Breit-Pauli and direct perturbation theory, regular approximations, matrix approximations, and pseudopotential and model potential methods. For each of these approximations, one-electron operators and many-electron methods are developed, spin-free and spin-orbit operators are presented, and the calculation of electric and magnetic properties is discussed. The treatment of spin-orbit effects with correlation rounds off the presentation ofapproximate methods. The book concludes with a discussion of the qualitative changes in the picture of structure and bonding that arise from the inclusion of relativity.
The Concise Encyclopedia of Self-Propagating High-Temperature Synthesis: History, Theory, Technology, and Products helps students and scientists understand the fundamental concepts behind self-propagating high-temperature synthesis (SHS). SHS-based technologies provide valuable alterations to traditional methods of material fabrication, such as powder metallurgy, conventional and force sintering, casting, extrusion, high isostatic pressure sintering, and others. The book captures the whole spectrum of the chemistry, physics, reactions, materials, and processes of self-propagating high-temperature synthesis. This book is an indispensable resource not only to scientists working in the field of SHS, but also to researchers in multidisciplinary fields such as chemical engineering, metallurgy, material science, combustion, explosion, and the chemistry of solids.
Solution Thermodynamics and its Application to Aqueous Solutions: A Differential Approach, Second Edition introduces a differential approach to solution thermodynamics, applying it to the study of aqueous solutions. This valuable approach reveals the molecular processes in solutions in greater depth than that gained by spectroscopic and other methods. The book clarifies what a hydrophobe, or a hydrophile, and in turn, an amphiphile, does to H2O. By applying the same methodology to ions that have been ranked by the Hofmeister series, the author shows that the kosmotropes are either hydrophobes or hydration centers, and that chaotropes are hydrophiles. This unique approach and important updates make the new edition a must-have reference for those active in solution chemistry.
Throughout its previous four editions, "Combustion" has made a very complex subject both enjoyable and understandable to its student readers and a pleasure for instructors to teach. With its clearly articulated physical and chemical processes of flame combustion and smooth, logical transitions to engineering applications, this new edition continues that tradition. Greatly expanded end-of-chapter problem sets and new areas of combustion engineering applications make it even easier for students to grasp the significance of combustion to a wide range of engineering practice, from transportation to energy generation to environmental impacts. Combustion engineering is the study of rapid energy and mass
transfer usually through the common physical phenomena of flame
oxidation. It covers the physics and chemistry of this process and
the engineering applications including power generation in internal
combustion automobile engines and gas turbine engines. Renewed
concerns about energy efficiency and fuel costs, along with
continued concerns over toxic and particulate emissions, make this
a crucial area of engineering.
Thermodynamics and information touch theory every facet of chemistry. However, the physical chemistry curriculum digested by students worldwide is still heavily skewed toward heat/work principles established more than a century ago. Rectifying this situation, Chemical Thermodynamics and Information Theory with Applications explores applications drawn from the intersection of thermodynamics and information theory-two mature and far-reaching fields. In an approach that intertwines information science and chemistry, this book covers: The informational aspects of thermodynamic state equations The algorithmic aspects of transformations-compression, expansion, cyclic, and more The principles of best-practice programming How molecules transmit and modify information via collisions and chemical reactions Using examples from physical and organic chemistry, this book demonstrates how the disciplines of thermodynamics and information theory are intertwined. Accessible to curiosity-driven chemists with knowledge of basic calculus, probability, and statistics, the book provides a fresh perspective on time-honored subjects such as state transformations, heat and work exchanges, and chemical reactions.
In this newly revised 5th Edition of Chemical and Engineering Thermodynamics, Sandler presents a modern, applied approach to chemical thermodynamics and provides sufficient detail to develop a solid understanding of the key principles in the field. The text confronts current information on environmental and safety issues and how chemical engineering principles apply in biochemical engineering, bio-technology, polymers, and solid-state-processing. This book is appropriate for the undergraduate and graduate level courses.
This English translation of a well-known Japanese book covers interfacial physicochemistry in materials science, especially for iron- and steelmaking processes. Interfacial Physical Chemistry of High-Temperature Melts bridges the gap between the basics and applications of physicochemistry. The book begins with an overview of the fundamentals of interfacial physical chemistry and discusses surface tension, describing the derivation of important equations to guide readers to a deep understanding of the phenomenon. The book then goes on to introduce interfacial properties of high-temperature melts, especially the Marangoni effect, and discusses applications to materials processing at high temperature focusing on recent research results by the author and the co-workers. This book is aimed at researchers, graduate students, and professionals in materials processing. Video clips of in-situ observation including experiments under microgravity condition and x-ray observation are available for download on the publisher's website to allow for a deeper understanding.
Companion to Chemical Thermodynamics accompanies the newly published Chemical Thermodynamics, 6th Edition, a well-known upper-division undergraduate/graduate text on classical thermodynamics.
In this book, Samohyl and Pekar offer a consistent and general non-equilibrium thermodynamic description for a model of chemically reacting mixtures. This type of model is frequently encountered in practice and up until now, chemically reacting systems (out of equilibrium) have rarely been described in books on non-equilibrium thermodynamics. Readers of this book benefit from the systematic development of the theory; this starts with general principles, going through the applications to single component fluid systems, and finishing with the theory of mixtures, including chemical reactions. The authors describe the simplest mixture model - the linear fluid - and highlight many practical and thermodynamically consistent equations for describing transport properties and reaction kinetics for this model. Further on in the book, the authors also describe more complex models. Samohyl and Pekar take special care to clearly explain all methodology and starting axioms and they also describe in detail applied assumptions and simplifications. This book is suitable for graduate students in chemistry, materials science and chemical engineering as well as professionals working in these and related areas.
The first edition of this classic book remains one of the very few introductory books covering both theoretical and practical aspects of thermal analysis (TA). This new edition includes a much enlarged section on MDSC, in which the instrument is described and a critical appraisal of the technique presented. Other additions include new sections on rate-controlled TGA, OTTER, and Specific Heat Spectroscopy, and a thoroughly updated section on X-Ray DSC. This very practical book is a must for people who use thermal analysis techniques in their everyday work. "An excellent introductory text" — Review of 1st Edition.
The applications and interest in thermal analysis and calorimetry have grown enormously during the last half of the 20th century. These techniques have become indispensable in the study of processes such as catalysis, hazards evaluation etc., and in measuring important physical properties quickly, conveniently and with markedly improved accuracy. Consequently, thermal analysis and calorimetry have grown in stature and more scientists and engineers have become at least part-time, practitioners. People new to the field therefore need a source of information describing the basic principles and current state of the art. The last volume of this 4 volume handbook, devoted to many aspects of biological thermal analysis and calorimetry, completes a comprehensive review of this important area. All chapters have been prepared by recognized experts in their respective fields. The approach taken is "how and what to do and when to do it." The complete work is a valuable addition to the already existing literature.
This long-awaited, revised and updated reference/text combines a thorough description of the origin and application of fundamental chemical kinetics through an assessment of realistic reactor problems with an expanded discussion of kinetics and its relation to chemical thermodynamics. Provides exercises of gradiating difficulty that range from simple applications of equations and concepts developed in the text to open-ended situations drawing on creative thinking Adds a host of worked-out illustrations and a notation list after each chapter, reinforcing important concepts Retaining the careful organization and logical progression of ideas that characterized the first edition, the Second Edition of Reaction Kinetics and Reactor Design clarifies chain and polymerization reactions in greater depth contains new material on microbial and enzyme kinetics and adsorption-desorption theory streamlines the presentation of the derivations arising from the kinetic theory of gases addresses transport effect in catalytic reactions explains gas-solid noncatalytic reactions covers the development of two-phase reactor theory based on plug flow, mixing cell, and dispersion models introduces theory and design of fluid slurry and trickle beds examines catalyst deactivation phenomena, ion exchange, and chromatographic reactors and more Including over 1450 equations for developing rational chemical reactor designs and analysis models, the Second Edition of Reaction Kinetics and Reactor Design is an excellent reference for chemical, mechanical, petroleum, plant, process, civil, and design engineers, and an ideal text for upper-level undergraduate and graduate students in these disciplines.
Laser approaches to combustion diagnostics are of considerable interest due to their remote, non-intrusive and in-situ character, unlimited temperature capability, and potential for simultaneous temporal and spatial resolution. This book aims to make these powerful and important new tools in combustion research understandable. Focuses on spectroscopically-based, spatially-precise, laser techniques for temperature and chemical composition measurements in reacting and non-reacting flows. Following introductory chapters on basic spectroscopy, laser physics, experimental methods and practical considerations, treats each of the major techniques in some detail, replete with measurement examples and references. Concludes with a treatment of field methods which employs the various techniques to perform measurements simultaneously over a two-dimensional slice of the medium being probed.
Engineering Analysis of Fires and Explosions demonstrates how professional forensic engineers apply basic concepts and principles from engineering and scientific disciplines to analyze fires and explosions. It describes how forensic engineers use a "reverse design" process to determine the original cause of a fire or explosion. This guide incorporates practices and lessons learned from the first-hand experiences of the author and his colleagues. It is an exciting introduction to the multidisciplinary subject of fire and explosion analysis and its legal ramifications. The author's straightforward language and style make the concepts easy to understand.
The CRC Handbook of Thermophysical and Thermochemical Data is an interactive software and handbook package that provides an invaluable source of reliable data embracing a wide range of properties of chemical substances, mixtures, and reacting systems. Use the handbook and software together to quickly, and easily generate property values at any desired temperature, pressure, or mixture composition.
Handbook of Thermal Conductivity of Liquids and Gases covers practically all of the data available on the thermalconductivity of pure liquids and gases. Thermal conductivity data included in the book is based on original experimental measurements and correlations recommended or adopted as a standard by the National Standard Reference Data Service of the Russian Federation. New tabulations of thermal conductivity data on high-molecular organic fluids and the alkali metals in both liquid and gaseous states are featured as well. This book will be an important reference for all researchers working in thermodynamics.
Many scientists and engineers do not realize that, under certain conditions, friction can lead to the formation of new structures at the interface, including in situ tribofilms and various patterns. In turn, these structures-usually formed by destabilization of the stationary sliding regime-can lead to the reduction of friction and wear. Friction-Induced Vibrations and Self-Organization: Mechanics and Non-Equilibrium Thermodynamics of Sliding Contact combines the mechanical and thermodynamic methods in tribology, thus extending the field of mechanical friction-induced vibrations to non-mechanical instabilities and self-organization processes at the frictional interface. The book also relates friction-induced self-organization to novel biomimetic materials, such as self-lubricating, self-cleaning, and self-healing materials. Explore Friction from a Different Angle-as a Fundamental Force of Nature The book begins with an exploration of friction as a fundamental force of nature throughout the history of science. It then introduces general concepts related to vibrations, instabilities, and self-organization in the bulk of materials and at the interface. After presenting the principles of non-equilibrium thermodynamics as they apply to the interface, the book formulates the laws of friction and highlights important implications. The authors also analyze wear and lubrication. They then turn their attention to various types of friction-induced vibration, and practical situations and applications where these vibrations are important. The final chapters consider various types of friction-induced self-organization and how these effects can be used for novel self-lubricating, self-cleaning, and self-healing materials. From Frictional Instabilities to Friction-Induced Self-Organization Drawing on the authors' original research, this book presents a new, twenty-first century perspective on friction and tribology. It shows how friction-induced instabilities and vibrations can lead to self-organized structures, and how understanding the structure-property relationships that lead to self-organization is key to designing "smart" biomimetic materials.
This book deals with the formulation of the thermodynamics of chemical and other systems far from equilibrium. It contains applications to non-equilibrium stationary states and approaches to such states, systems with multiple stationary states, stability and equi-stability conditions, reaction diffusion systems, transport properties, and electrochemical systems. The theoretical treatment is complemented by experimental results to substantiate the formulation.
From the basics of thermodynamics to solutions for modern dynamical problems —the complete beginner's guide to statistical mechanics. Unlike most books on statistical mechanics, this one is written for advanced students in chemistry, chemical engineering, biophysics, and related fields. It targets readers with no prior exposure to statistical mechanics and provides a complete introduction to all the important principles, concepts, and equations, while maintaining a level of mathematical sophistication that most advanced chemistry students will find manageable. The emphasis is on finding solutions to common problems in chemistry. Topics covered include:
Clearly written, and with a minimum of theory, Statistical Mechanics for Chemists takes you step by step through mathematical manipulations and explains the physical and chemical bases for each procedure. It is a valuable resource for advanced students in chemistry, chemical engineering, biophysics, and related fields.
The introductory textbook provides an update on electrolyte thermodynamics with a molecular perspective. It is eminently suited as an introduction to the solution thermodynamics of ionic mixtures at the undergraduate and graduate level. It is also invaluable for the understanding and design in the engineering of natural gas treating and adsorption refrigeration with electrolytes.
Momentum, heat and mass transport phenomena can be found everywhere in nature. A solid understanding of the principles of these processes is essential for chemical and process engineers. The second edition of Transport Phenomena builds on the foundation of the first edition which presented fundamental knowledge and practical application of momentum, heat and mass transfer processes in a form useful to engineers. This revised edition includes revisions of the original text in addition to new applications providing a thoroughly updated edition. This updated text includes;
This book is a follow-on to the author's bestseller, Principles of Combustion, Second Edition published in 2005. The text covers advanced topics of combustion and flame that are not covered anywhere else. Kuo provides a multiphase systems approach beginning with more common topics and moving to higher level applications such as reacting boundary layer flows, ignition of homogeneous mixtures, flame extinction phenomena, and detonation processes in condensed phase materials. As with Kuo's earlier book, large numbers of examples and problems and a solutions manual are provided. |
You may like...
|