![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Chemistry > Physical chemistry > Thermochemistry & chemical thermodynamics
Thermodynamics is fundamental to university and college curricula in chemistry, physics, engineering and many life sciences around the world. It is also notoriously difficult for students to understand, learn and apply. What makes this book different, and special, is the clarity of the text. The writing style is fluid, natural and lucid, and everything is explained in a logical and transparent manner. Thermodynamics is a deep, and important, branch of science, and this book does not make it "easy". But it does make it intelligible. This book introduces a new, 'Fourth Law' of Thermodynamics' based on the notion of Gibbs free energy, which underpins almost every application of thermodynamics and which the authors claim is worthy of recognition as a 'law'. The last four chapters bring thermodynamics into the twenty-first century, dealing with bioenergetics (how living systems capture and use free energy), macromolecule assembly (how proteins fold), and macromolecular aggregation (how, for example, virus capsids assemble). This is of great current relevance to students of biochemistry, biochemical engineering and pharmacy, and is covered in very few other texts on thermodynamics. The book also contains many novel and effective examples, such as the explanation of why friction is irreversible, the proof of the depression of the freezing point, and the explanation of the biochemical standard state.
Advances in Chemical Engineering, Volume 58 in this long-running serial, highlights new advances in the field with this new volume presenting interesting and timely chapters written by an international board of authors.
The Thermodynamics of Phase and Reaction Equilibria, Second Edition, provides a sound foundation for understanding abstract concepts of phase and reaction equilibria (e.g., partial molar Gibbs energy, fugacity, and activity), and shows how to apply these concepts to solve practical problems using numerous clear examples. Available computational software has made it possible for students to tackle realistic and challenging problems from industry. The second edition incorporates phase equilibrium problems dealing with nonideal mixtures containing more than two components and chemical reaction equilibrium problems involving multiple reactions. Computations are carried out with the help of Mathcad (R).
Natural phenomena consist of simultaneously occurring transport processes and chemical reactions. These processes may interact with each other and may lead to self-organized structures, fluctuations, instabilities, and evolutionary systems. "Nonequilibrium Thermodynamics, 3rd edition" emphasizes the unifying role of thermodynamics in analyzing the natural phenomena. This third edition updates and expands on the first and second editions by focusing on the general balance equations for coupled processes of physical, chemical, and biological systems. The new edition contains a new chapter on stochastic approaches to include the statistical thermodynamics, mesoscopic nonequilibrium thermodynamics, fluctuation theory, information theory, and modeling the coupled biochemical systems in thermodynamic analysis. This new addition also comes with more examples and practice problems.
This textbook takes an interdisciplinary approach to the subject of thermodynamics and is therefore suitable for undergraduates in chemistry, physics and engineering courses. The book is an introduction to phenomenological thermodynamics and its applications to phase transitions and chemical reactions, with some references to statistical mechanics. It strikes the balance between the rigorousness of the Callen text and phenomenological approach of the Atkins text. The book is divided in three parts. The first introduces the postulates and laws of thermodynamics and complements these initial explanations with practical examples. The second part is devoted to applications of thermodynamics to phase transitions in pure substances and mixtures. The third part covers thermodynamic systems in which chemical reactions take place. There are some sections on more advanced topics such as thermodynamic potentials, natural variables, non-ideal mixtures and electrochemical reactions, which make this book of suitable also to post-graduate students.
The first edition of this classic book remains one of the very few introductory books covering both theoretical and practical aspects of thermal analysis (TA). This new edition includes a much enlarged section on MDSC, in which the instrument is described and a critical appraisal of the technique presented. Other additions include new sections on rate-controlled TGA, OTTER, and Specific Heat Spectroscopy, and a thoroughly updated section on X-Ray DSC. This very practical book is a must for people who use thermal analysis techniques in their everyday work. "An excellent introductory text" — Review of 1st Edition.
Free radicals are used as reactive intermediates in a wide range of organic syntheses as well as playing an important role in biological systems and industrial processes. Free radical chemistry is a rapidly developing area, with applications not only in chemistry but also in processes related to the environment, biology, drug research and medicine. General Aspects of the Chemistry of Radicals is an introductory book, discussing methods of formation and detection of free radicals, the rate of their reactions and their thermochemistry. The book closely examines the reactivity of free radical reactions, rate constants and temperature dependence, important in predicting the behaviour of yet unstudied systems and validating reaction mechanisms. General Aspects of the Chemistry of Radicals is written for researchers working in environmental and material sciences, organic, inorganic and physical organic chemistry. It will also be of interest to biochemists and molecular biologists working with the effects of free radicals on living systems.
The book provides a systematic view on flammability and a collection of solved engineering problems in the fields of dilution and purge, mine gas safety, clean burning safety and gas suppression modeling. For the first time, fundamental principles of energy conservation are used to develop theoretical flammability diagrams and are then explored to understand various safety-related mixing problems. This provides the basis for a fully-analytical solution to any flammability problem. Instead of the traditional view that flammability is a fundamental material property, here flammability is discovered to be a result of the explosibility of air and the ignitability of fuel, or a process property. By exploring the more fundamental concepts of explosibility and ignitability, the safety targets of dilution and purge can be better defined and utilized for guiding safe operations in process safety. This book provides various engineering approaches to mixture flammability, benefiting not only the safety students, but also field operators, as a useful resource for the safe handling of flammable gases and liquids. It will be useful to anyone who worries about the ignition potential of a flammable mixture.
This book is the first to detail the chemical changes that occur in deforming materials subjected to unequal compressions. While thermodynamics provides, at the macroscopic level, an excellent means of understanding and predicting the behavior of materials in equilibrium and non-equilibrium states, much less is understood about nonhydrostatic stress and interdiffusion at the chemical level. Little is known, for example, about the chemistry of a state resulting from a cylinder of deforming material being more strongly compressed along its length than radially, a state of non-equilibrium that remains no matter how ideal the cylinder's condition in other respects. M. Brian Bayly here provides the outline of a comprehensive approach to gaining a simplified and unified understanding of such phenomena. The author's perspective differs from those commonly found in the technical literature in that he emphasizes two little-used equations that allow for a description and clarification of viscous deformation at the chemical level. Written at a level that will be accessible to many non-specialists, this book requires only a fundamental understanding of elementary mathematics, the nonhydrostatic stress state, and chemical potential. Geochemists, petrologists, structural geologists, and materials scientists will find Chemical Change in Deforming Materials interesting and useful.
The book comprises an assembly of benchmarks and examples for porous media mechanics collected over the last twenty years. Analysis of thermo-hydro-mechanical-chemical (THMC) processes is essential to many applications in environmental engineering, such as geological waste deposition, geothermal energy utilisation, carbon capture and storage, water resources management, hydrology, even climate chance. In order to assess the feasibility as well as the safety of geotechnical applications, process-based modelling is the only tool to put numbers, i.e. to quantify future scenarios. This charges a huge responsibility concerning the reliability of computational tools. Benchmarking is an appropriate methodology to verify the quality of modelling tools based on best practices. Moreover, benchmarking and code comparison foster community efforts. The benchmark book is part of the OpenGeoSys initiative - an open source project to share knowledge and experience in environmental analysis and scientific computation.
This widely acclaimed text, now in its fifth edition and translated into many languages, continues to present a clear, simple and concise introduction to chemical thermodynamics. An examination of equilibrium in the everyday world of mechanical objects provides the starting point for an accessible account of the factors that determine equilibrium in chemical systems. This straightforward approach leads students to a thorough understanding of the basic principles of thermodynamics, which are then applied to a wide range of physico-chemical systems. The book also discusses the problems of non-ideal solutions and the concept of activity, and provides an introduction to the molecular basis of thermodynamics. Over five editions, the views of teachers of the subject and their students have been incorporated. The result is a little more rigour in specifying the dimensions within logarithmic expressions, the addition of more worked examples and the inclusion of a simple treatment of the molecular basis of thermodynamics. Students on courses in thermodynamics will continue to find this popular book an excellent introductory text.
This book is a beginners introduction to chemical thermodynamics
for engineers.
This title is a Pearson Global Edition. The Editorial team at Pearson has worked closely with educators around the world to include content which is especially relevant to students outside the United States. For courses in Thermodynamics. This package includes Mastering Chemistry. A visual, conceptual and contemporary approach to Physical Chemistry Engel and Reid's Thermodynamics, Statistical Thermodynamics, and Kinetics provides a contemporary, conceptual, and visual introduction to physical chemistry. The authors emphasize the vibrancy of physical chemistry today and illustrate its relevance to the world around us, using modern applications drawn from biology, environmental science, and material science. The 4th Edition provides visual summaries of important concepts and connections in each chapter, offers students "just in time" math help, and expands content to cover science relevant to physical chemistry. Reach every student by pairing this text with Mastering Chemistry Mastering (TM) is the teaching and learning platform that empowers you to reach every student. By combining trusted author content with digital tools and a flexible platform, Mastering personalizes the learning experience and improves results for each student. Mastering Chemistry should only be purchased when required by an instructor. Please be sure you have the correct ISBN and Course ID. Instructors, contact your Pearson representative for more information.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued.
This book covers the results of investigations into the mechanisms and kinetics of thermal decompositions of solid and liquid substances on the basis of thermochemical analyses of the processes. In the framework of the proposed ideas, the main features of these reactions are explained and many problems and unusual phenomena, which have accumulated in this field, are interpreted. New methods of TA measurement and calculation have been developed, which permit the precision and accuracy of determination of kinetic parameters to be increased substantially. Reliable kinetic characteristics have been obtained and the decomposition mechanisms for several tens of substances have been interpreted. These include different classes of compounds: crystalline hydrates, oxides, hydroxides, nitrides, azides, nitrates, sulfates, carbonates and oxalates.
Given that thermodynamics books are not a rarity on the market, why would an additional one be useful? The answer is simple: at any level, thermodynamics is usually taught as a somewhat abstruse discipline where many students get lost in a maze of difficult concepts. However, thermodynamics is not as intricate a subject as most people feel. This book fills a niche between elementary textbooks and mathematically oriented treatises, and provides readers with a distinct approach to the subject. As indicated by the title, this book explains thermodynamic phenomena and concepts in physical terms before proceeding to focus on the requisite mathematical aspects. It focuses on the effects of pressure, temperature and chemical composition on thermodynamic properties and places emphasis on rapidly evolving fields such as amorphous materials, metastable phases, numerical simulations of microsystems and high-pressure thermodynamics. Topics like redox reactions are dealt with in less depth, due to the fact that there is already much literature available. Without requiring a background in quantum mechanics, this book also illustrates the main practical applications of statistical thermodynamics and gives a microscopic interpretation of temperature, pressure and entropy. This book is perfect for undergraduate and graduate students who already have a basic knowledge of thermodynamics and who wish to truly understand the subject and put it in a broader physical perspective. The book is aimed not at theoretical physicists, but rather at practitioners with a variety of backgrounds from physics to biochemistry for whom thermodynamics is a tool which would be better used if better understood.
Modern energetic materials include explosives, blasting powders, pyrotechnic m- tures and rocket propellants [1, 2]. The study of high-temperature decomposition of condensed phases of propellants and their components (liquid, solid and hybrid) is currently of special importance for the development of space-system engineering [3, 4]. To better understand the burning mechanisms (stationary, nonstationary, - steady) of composite solid propellants and their components, information about the macrokinetics of their high-temperature decomposition is required [5]. To be able to evaluate the ignition parameters and conditions of safe handling of heat-affected explosives, one needs to know the kinetic constants of their high-temperature - composition. The development of new composite solid propellants characterized by high performance characteristics (high burning rates, high thermal stability, stability to intrachamber perturbations, and other aspects) is not possible without quanti- tive data on the high-temperature decomposition of composite solid propellants and their components [6]. The same reasons have resulted in signi?cant theoretical and practical interest in the high-temperature decomposition of components of hybrid propellants. It is known that hybrid propellants have not been used very widely due to the low bu- ing (pyrolysis) rates of the polymer blocks in the combustion chambers of hybrid rocket engines. To increase the burning rates it is necessary to obtain information about their relationships to the corresponding kinetic and thermophysical prop- ties of the fuels.
The theoretical basis of this book is developed ab ovo. This requires dealing with several problems arising in physical chemistry including the concept of entropy as a thermodynamic coordinate and its relation to probability. Thus Maxwell Boltzmann and Gibbs statistical thermodynamics, and quantum statistics are made considerable use of. A statistical mechanical derivation of the law of mass action for gases and solids is presented, and the problems arising in the application of the law of mass action to the liquid state are addressed. Molecular interactions and how to take them into account when deriving the law of mass action is discussed in some detail sketching a way alternativ to the use of activities. Finally, attention is drawn to the statistical mechanical background to Linear Free Energy Relationships (LFER's) and of Isokinetic Relationships (IKR's) and their connections with molecular interactions.
Thermodynamics of non-equilibrium processes is a comparatively new area of thermodynamics. Traditionally this discipline is taught only to chemistry students who have a very strong background in physics. The author of the present book has adaptedhis course of thermodynamics of non-equilibrium processes so that the subject can be treated in terms understandable to any chemist with a formal physicochemical education in the fields of classical thermodynamics of equilibrium processes and traditional chemical kinetics. The discipline combines thermodynamics and chemical kinetics and is helpful to researchers engaged in studying complex chemical transformations, in particular, catalytic transformations. For example, important concepts for such studies are conditions of kinetic irreversibility of complex stepwise stoichiometric reactions, rate-determining and rate-limiting stages, etc. In traditional chemical kinetics, these concepts are not very clear and tend to be concealed in courses. Fortunately, these concepts appear to be consistently and properly defined in terms of thermodynamics of non-equilibrium processes. The present book is the synopsis of lectures on thermodynamics
of non-equilibrium processes and a particular course on
thermodynamics of operating catalysts. Applies simple approaches of non-equilibrium thermodynamics to analyzing properties of chemically reactive systems Covers systems far from equilibrium, allowing the consideration of most chemically reactive systems of a chemical or biological nature This approach resolves many complicated problems in the teaching of chemical kinetics "
Advances in nanoscale science show that the properties of many materials are dominated by internal structures. In molecular cases, such as window glass and proteins, these internal structures obviously have a network character. However, in many partly disordered electronic materials, almost all attempts at understanding are based on traditional continuum models. This workshop focuses first on the phase diagrams and phase transitions of materials known to be composed of molecular networks. These phase properties characteristically contain remarkable features, such as intermediate phases that lead to reversibility windows in glass transitions as functions of composition. These features arise as a result of self-organization of the internal structures of the intermediate phases. In the protein case, this self-organization is the basis for protein folding. The second focus is on partly disordered electronic materials whose phase properties exhibit the same remarkable features. In fact, the phenomenon of High Temperature Superconductivity, discovered by Bednorz and Mueller in 1986, and now the subject of 75,000 research papers, also arises from such an intermediate phase. More recently discovered electronic phenomena, such as giant magnetoresistance, also are made possible only by the existence of such special phases. This book gives an overview of the methods and results obtained so far by studying the characteristics and properties of nanoscale self-organized networks. It demonstrates the universality of the network approach over a range of disciplines, from protein folding to the newest electronic materials.
The scientific description of processes involved in the powerful release of energy from high explosive materials remains one of the most complex problems confronting modern science. In spite of fifty years of concentrated research built upon careful and precise experiments and the massive use of modern computers, the problem remains a major challenge. Anatoliy N. Dremin is recognized as perhaps the most innovative contributor to detonation science and this book provides unique insights into the physics, chemistry, and mechanics relevant to initiation and sustenance of detonation processes. The book presents theories, both conventional and unusual, for describing the processes as well as the experimental challenges to theory and modeling. An unusually valuable contribution to modern science, it will be required reading for any serious student of energetic materials and powerful, high-energy processes.
Specialist Periodical Reports provide systematic and detailed review coverage of progress in the major areas of chemical research. Written by experts in their specialist fields the series creates a unique service for the active research chemist, supplying regular critical in-depth accounts of progress in particular areas of chemistry. For over 80 years the Royal Society of Chemistry and its predecessor, the Chemical Society, have been publishing reports charting developments in chemistry, which originally took the form of Annual Reports. However, by 1967 the whole spectrum of chemistry could no longer be contained within one volume and the series Specialist Periodical Reports was born. The Annual Reports themselves still existed but were divided into two, and subsequently three, volumes covering Inorganic, Organic and Physical Chemistry. For more general coverage of the highlights in chemistry they remain a 'must'. Since that time the SPR series has altered according to the fluctuating degree of activity in various fields of chemistry. Some titles have remained unchanged, while others have altered their emphasis along with their titles; some have been combined under a new name whereas others have had to be discontinued.
During the last decades a considerable effort has been made on the computation of the isothermal flow of viscoelastic fluids. In fact the activities related to this particular field of non-Newtonian fluid mechanics have focused on the following questions: which type of constitutive equation describes non-Newtonian fluid behaviour; how to measure fluid parameters; and what type of computational scheme leads to reliable, stable and cost-effective computer programs. During the same period, typical non-Newtonian fluid phenomena have been experimentally examined, such as the flow through a four-to-one' contraction, the flow around a sphere or separation flow, providing fresh challenges for numerical modellers. Apart from momentum transport, however, fluid flow is strongly influenced by heat treansport in most real industrial operations in which non-Newtonian fluids are processed. The IUTAM Symposium on Numerical Simulation of Nonisothermal Flow of Viscoelastic Liquids' held at Rolduc Abbey in Kerkrade, the Netherlands, November 1--3, 1993, was organised to monitor the state of affairs in regard to the influence of nonisothermal effects on the flow of a viscoelastic liquid. The present collection of papers gives an overview of what has been achieved so far. It is a milestone in the rapidly emerging and exciting new field in non-Newtonian fluid mechanics.
This book treats the experimental methods used to determine the physical properties of explosives and explosions - physical principles, operating procedures and evaluations of results. Aimed at practicing engineers as well as experimental physicists who investigate the effects of explosions, this book will be of interest to research laboratories, manufacturers of explosives, military training establishments, technical laboratories and so forth.
Supercritical fluids which are neither gas nor liquid, but can be compressed gradually from low to high density, are gaining increasing importance as tunable solvents and reaction media in the chemical process industry. By adjusting the pressure, or more strictly the density, the properties of these fluids are customized and manipulated for the particular process at hand, be it a physical transformation, such as separation or solvation, or a chemical transformation, such as a reaction or reactive extraction. Supercritical fluids, however, differ from both gases and liquids in many respects. In order to properly understand and describe their properties, it is necessary to know the implications of their nearness to criticality, to be aware of the complex types of phase separation (including solid phases) that occur when the components of the fluid mixture are very different from each other, and to develop theories that can cope with the large differences in molecular size and shape of the supercritical solvent and the solutes that are present. |
![]() ![]() You may like...
Dead Man Running - One Man's Story of…
Kevin Webber, Mark Church
Hardcover
|