![]() |
![]() |
Your cart is empty |
||
Books > Medicine > Other branches of medicine > Medical imaging > Tomography
This book highlights important techniques for cellular imaging and covers the basics and applications of electron tomography and related techniques. In addition, it considers practical aspects and broadens the technological focus by incorporating techniques that are only now becoming accessible (e.g. block face imaging). The first part of the book describes the electron microscopy 3D technique available to scientists around the world, allowing them to characterize organelles, cells and tissues. The major emphasis is on new technologies like scanning transmission electron microscopy (STEM) tomography, though the book also reviews some of the more proven technologies like electron tomography. In turn, the second part is dedicated to the reconstruction of data sets, signal improvement and interpretation
This book covers the state-of-the-art research on advanced high-resolution tomography, exploring its role in regenerative medicine. and also explores the 3D interactions between tissues, cells, and biomaterials. Various multidisciplinary paths in regenerative medicine are covered, including X-ray microtomography and its role in regenerative medicine, synchrotron radiation-based microtomography and phase contrast tomography, the challenge of the vascularization of regenerated tissues, lung and cartilage imaging, and more. This is an ideal book for biomedical engineers, biologists, physicists, clinicians, and students who want to pursue their studies in the field of regenerative medicine. This book also: Reviews in detail the algorithms and software used for the 3D exploration of regenerated tissue Covers the latest research on the use of X-ray microtomography for muscle diseases Details applications of synchrotron radiation tomography in orthopedics and dentistry
Parameters such as membrane transport, metabolism and protein incorporation govern the fate of amino acids in living tissue. Is it possible to use positron tomography to measure some of them, and what is their meaning in normal and pathological situations? These questions have been addressed for a long time and no satisfactory answer has yet been given. This book, which derives from an EEC workshop organized in the frame of the Concerted Action on "PET Investigation of Cellular Regeneration and Degeneration", held in Lyon in February 1992, gives the present state of knowledge in this field based on the most recent studies. Contributions from 24 leading European and American scientists are presented and discussed.
1. Neuroanatomy of dopaminergic system in the human brain.- 2. Radioligands for PET studies of D2-receptors: butyrophenone and ergot derivatives.- 3. Radioligands for dopamine receptor PET studies: benzamides and ligands for dopamine D-1 receptors.- 4. Monoamine precursors in PET research - biochemical issues and functional significance.- 5. Quantitation problems in positron emission tomography (PET) as applied to the kinetic analysis of the striatum dopamine data.- 6. Investigation of the dopamine system with positron emission tomography: general issues in modeling.- 7. Modelisation: application to the D2 receptors.- 8. [18F] Fluorodopa uptake in brain.- 9. Dopamine reuptake sites: the issues.- 10. Movement disorders: the clinical issues.- 11. Non-human primate models of dopamine system disorders: understanding neurodegenerative diseases and testing new therapeutic strategies.- 12. The dopamine system and mental disorders: clinical and psychopharmacological overview.- 13. D2 dopamine receptors and schizophrenia.- 14. The assessment of central D2-dopanvne receptor occupancy with positron emission tomography in long-term medicated schizophrenic patients.- 15. Measurement of dopamine receptor occupancy: clinical issues.
This book presents a critical assessment of progress on the use of nuclear magnetic resonance spectroscopy to determine the structure of proteins, including brief reviews of the history of the field along with coverage of current clinical and in vivo applications. The book, in honour of Oleg Jardetsky, one of the pioneers of the field, is edited by two of the most highly respected investigators using NMR, and features contributions by most of the leading workers in the field. It will be valued as a landmark publication that presents the state-of-the-art perspectives regarding one of today's most important technologies.
The second edition of Spectral Domain OCT is a practical guide to the investigation and diagnosis of retinal disease using the Topcon machine. Beginning with an overview of OCT, the book provides a step by step approach to image capture, analysis and interpretation. With the help of numerous case studies, OCT patterns in different types of retinal disease are ppresented as both 2D and 3D images. In addition, Spectral Domain OCT highlights features of the new Topcon 2000 machine with an enhanced speed of 27,000 A scans/second, improved software algorithms and extra facilities for anterior segment imaging.
This book provides a detailed overview on the use of global optimization and parallel computing in microwave tomography techniques. The book focuses on techniques that are based on global optimization and electromagnetic numerical methods. The authors provide parallelization techniques on homogeneous and heterogeneous computing architectures on high performance and general purpose futuristic computers. The book also discusses the multi-level optimization technique, hybrid genetic algorithm and its application in breast cancer imaging.
A comprehensive and contemporary reference work covering the basic science and clinical applications of positron emission tomography. This book reflects the tremendous increase in interest in PET as both a clinical and research imaging modality in the past 10 years. Written by experts in the field and edited by those involved in PET development, and training of scientists and medical specialists. Positron Emission Tomography - basic science and clinical practice thoroughly explains the principles, clinical applications and economic aspects of PET today. Chapters go into detail on PET applications in oncology, the central nervous system, cardio-respiratory systems, infectious diseases and pediatrics. Discussions are also found on technology design and evaluation, PET in drug discovery and development in imaging gene expression and therapy. Peter E. Valk MB BS FRACP is based in the Northern California PET Imaging Center, Sacramento, CA USA, Dale L. Bailey PhD FIPEM ARCP is based in the Department of Nuclear Medicine, Guy's Hospital, London UK, David W. Townsend PhD is based in the Department of Radiology, University of Pittsburgh, Pittsburgh, PA USA, Michael N. Maisey MD FRCP FRCR is Professor at the Department of Radiological Sciences, Guy's Hospital, London UK.
Oncological imaging has thoroughly changed in the past decade, especially due to the introduction of PET and 18FDG. In "Positron Emission Tomography," expert referring specialists and professional imagers seek to help bridge some of the knowledge gaps in several oncological domains. The book s goal is to aid in the improvement of communicative competences: to communicate scan findings so that the referring specialist receives proper advice from the imager, and that, alternatively, the referring one provides the imager with appropriate clinical details to allow for a proper interpretation, and that the referring specialist is aware of the possibilities and limitations of the requested technology. While it focuses on FDG PET, other radiopharmaceuticals are covered as well, where appropriate. Written for the highly respected "Methods in Molecular Biology " series, this volume provides the kind of detailed description and implementation advice that is crucial for getting optimal results. Authoritative and convenient, "Positron Emission Tomography" serves as an excellent reference for oncologists, surgeons, radiotherapists, radiologists, nuclear medicine physicians, and pathologists desiring a stronger synergy within their vital efforts."
Computed Tomography gives a detailed overview of various aspects of computed tomography. It discusses X-ray CT tomography from a historical point of view, the design and physical operating principles of computed tomography apparatus, the algorithms of image reconstruction and the quality assessment criteria of tomography scanners. Algorithms of image reconstruction from projections, a crucial problem in medical imaging, are considered in depth. The author gives descriptions of the reconstruction methods related to tomography scanners with a parallel X-ray beam, trough solutions with fan-shaped beam and successive modifications of spiral scanners. Computed Tomography contains a dedicated chapter for those readers who are interested in computer simulations based on studies of reconstruction algorithms. The information included in this chapter will enable readers to create a simulation environment in which virtual tomography projections can be obtained in all basic projection systems. This monograph is a valuable study on computed tomography that will be of interest to advanced students and researchers in the fields of biomedical engineering, medical electronics, computer science and medicine.
The second E. C. Workshop on Ultrasonic Tissue Characterization was organized for the assessment of research goals and plans as the basis to a grant proposal for a "Concerted Action" which will be forwarded to the European Commission. It should, therefore, not only be considered as a work in progress exhibition which succeeded the former activities within the E. C. (Inventory on Tissue Characterization in Europe and first Workshop). The Steering Group invited a 1 imited group of Institutes to send its group leader and a research fel low in the entitled field, who should expose the overall research program, as wei 1 as the more specific work on tissue characterization by RF signal analysis and spectroscopy. The ultimate goal of the Workshop has been the formulation of schemes of interaction among the Institutes and individuals and the definition of cooperative research programs. The remainder of the groups and some of the groups present are working in the field of analysis and processing of cl inical A- and B-mode echograms (i. e. video signals). Because this work is more closely related to the cl inical diagnostics it was decided that for that reason no preparatory workshop was needed. In the final proposal for the Concerted Action this work wi 1 1 get ample attention. Although not many clinicians were present, their positive interest in the sophisticated analysis techniques and their contribution to the dis cussions again have been a most valuable and stimulating experience.
Radiochemical methodology constitutes the most important base for the successful functioning of a PET group in the routine production and development of radiopharmaceuticals. Of the several hundred products which have been labelled with positron emitters during the past two decades about 35 are presently considered to be of major interest. The time for a state-of-the-art review is right, since this field has advanced over the past fifteen years to reach a level where guidelines can now be suggested. Chapters of this book deal with each of the main methodological aspects of the chemistry needed to develop an effective radiopharmaceutical, namely radionuclide production, automation and metabolite analysis. A further chapter on QA/QC is written by a broadly-based expert group and is meant to provide a guideline and a base for future monographs and regulations on major PET radiopharmaceuticals of today. This book will help the increasing numbers of scientists who are now entering the field of PET to appreciate the methodological aspects that are normally addressed by chemists in relation to PET radiopharmaceuticals; it provides many useful practical guidelines and will promote early success in their own endeavours, since these will often necessarily begin by establishing chemical methodology of the kind discussed here.
PET in Clinical Oncology describes the use of Positron Emission
Tomography (PET) in the diagnosis and management of malignant
tumors. Experts from Germany and the United States present basics,
technical details, and clinical aspects for both standard and new
PET techniques. The book illustrates the importance of PET in
comparison to other imaging techniques.
This book acts as a primer for radiographers upon performing computed tomography (CT) examinations. The focus resides in radiation physics, radiobiology, anatomy, imaging protocols and image evaluation. It seeks to provide readers insight into the practical and innovative approaches within CT, backed up with key literature and examples in practice. Recent innovations and the importance of new technology to acquire enhanced quality remain a focal point. These are essential in understanding the importance of dose optimization, patient anatomy and common pathology observed. Patient care will remain central in this book, supported with a dedicated chapter discussing effective communication, patient education, informed consent, coupled with the assessment of laboratory results and vital signs. The editors draw from recent publications and clinical expertise, supported with the growing trend of technological advances utilized within the CT environment. Critically, this volume focuses on the role of CT for an array of audiences but, more specifically, undergraduate and postgraduate radiographers worldwide.
This is a practical guide to tomographic image reconstruction with projection data, with strong focus on Computed Tomography (CT) and Positron Emission Tomography (PET). Classic methods such as FBP, ART, SIRT, MLEM and OSEM are presented with modern and compact notation, with the main goal of guiding the reader from the comprehension of the mathematical background through a fast-route to real practice and computer implementation of the algorithms. Accompanied by example data sets, real ready-to-run Python toolsets and scripts and an overview the latest research in the field, this guide will be invaluable for graduate students and early-career researchers and scientists in medical physics and biomedical engineering who are beginners in the field of image reconstruction. A top-down guide from theory to practical implementation of PET and CT reconstruction methods, without sacrificing the rigor of mathematical background Accompanied by Python source code snippets, suggested exercises, and supplementary ready-to-run examples for readers to download from the CRC Press website Ideal for those willing to move their first steps on the real practice of image reconstruction, with modern scientific programming language and toolsets Daniele Panetta is a researcher at the Institute of Clinical Physiology of the Italian National Research Council (CNR-IFC) in Pisa. He earned his MSc degree in Physics in 2004 and specialisation diploma in Health Physics in 2008, both at the University of Pisa. From 2005 to 2007, he worked at the Department of Physics "E. Fermi" of the University of Pisa in the field of tomographic image reconstruction for small animal imaging micro-CT instrumentation. His current research at CNR-IFC has as its goal the identification of novel PET/CT imaging biomarkers for cardiovascular and metabolic diseases. In the field micro-CT imaging, his interests cover applications of three-dimensional morphometry of biosamples and scaffolds for regenerative medicine. He acts as reviewer for scientific journals in the field of Medical Imaging: Physics in Medicine and Biology, Medical Physics, Physica Medica, and others. Since 2012, he is adjunct professor in Medical Physics at the University of Pisa. Niccolo Camarlinghi is a researcher at the University of Pisa. He obtained his MSc in Physics in 2007 and his PhD in Applied Physics in 2012. He has been working in the field of Medical Physics since 2008 and his main research fields are medical image analysis and image reconstruction. He is involved in the development of clinical, pre-clinical PET and hadron therapy monitoring scanners. At the time of writing this book he was a lecturer at University of Pisa, teaching courses of life-sciences and medical physics laboratory. He regularly acts as a referee for the following journals: Medical Physics, Physics in Medicine and Biology, Transactions on Medical Imaging, Computers in Biology and Medicine, Physica Medica, EURASIP Journal on Image and Video Processing, Journal of Biomedical and Health Informatics.
Can drug development and evaluation be improved by the use of positron emission tomography (PET)? PET is now well established and many PET centres participate in networks that warrant the quality of their research. PET allows one to follow the effect of a drug on a variety of patients' metabolic parameters. In addition, PET may be used to follow the fate in vivo of a compound, allowing visualisation of its binding to specific receptors and a direct study of the mechanism of drug action in normal and pathological situations. The book shows the fields in which PET offers new and unique information for the development of drugs (conception, toxicity, pharmacokinetics and metabolism, clinical research, and relations between clinical and biological effects) and evaluates fields in which PET may shorten the development time of drugs. Audience: Professionals in the pharmaceutical industry in all areas of drug discovery and pharmacology, pre-clinical testing, pharmacokinetics and metabolism, clinical evaluation, registration and regulatory affairs. Government health authority representatives who assess data and documentation on new drug development and radiopharmaceuticals. Academic experts concerned with any of these areas.
Since the introduction of myocardial perfusion imaging and radionuclide angiography in the mid-seventies, cardiovascular nuclear medicine has undergone an explosive growth. The use of nuclear cardiology techniques has become one of the cornerstones of the noninvasive assessment of coronary artery disease. In the past 15 years major steps have been made from visual analysis to quantitative analysis, from planar imaging to tomographic imaging, from detection of disease to prognosis, and from separate evaluations of perfusion, metabolism, and function to an integrated assessment of myocardial viability. In recent years many more advances have been made in cardiovascular nuclear imaging, such as the development of new imaging agents, reevaluation of existing procedures, and new clinical applications. This book describes the most recent developments in nuclear cardiology and also addresses new contrast agents in MRI. What's New in Cardiac Imaging will assist the clinical cardiologist, the cardiology fellow, the nuclear medicine physician, and the radiologist in understanding the most recent achievements in clinical cardiovascular nuclear imaging.
The application of 3D methodology has recently been receiving increasing attention at many PET centres, and this monograph is an attempt to provide a state-of-the-art review of this methodology, covering 3D reconstruction methods, quantitative procedures, current tomography performance, and clinical and research applications. No such review has been available until now to assist PET researchers in understanding and implementing 3D methodology, and in evaluating the performance of the available imaging technology. In all the chapters, the subject matter is treated in sufficient depth to appeal equally to the physicist or engineer who wishes to establish the methodology, and to PET investigators with experience in 2D PET who wish to familiarize themselves with the concepts and advantages of 3D, and to be made aware of the pitfalls.
Imaging of tissue blood flow (BF) distributions provides vital information for the diagnosis and therapeutic monitoring of various vascular diseases. The innovative near-infrared speckle contrast diffuse correlation tomography (scDCT) technique produces full 3D BF distributions. Many advanced features are provided over competing technologies including high sampling density, fast data acquisition, noninvasiveness, noncontact, affordability, portability, and translatability across varied subject sizes. The basic principle, instrumentation, and data analysis algorithms are presented in detail. The extensive applications are summarized such as imaging of cerebral BF (CBF) in mice, rat, and piglet animals with skull penetration into deep brain. Clinical human testing results are described by recovery of BF distributions on preterm infants (CBF) through incubator wall, and on sensitive burn tissues and mastectomy skin flaps without direct device-tissue interactions. Supporting activities outlined include integrated capability for acquiring surface curvature information, rapid 2D blood flow mapping, and optimizations via tissue-like phantoms and computer simulations. These applications and activities both highlight and guide the reader as to the expected abilities and limitations of scDCT for adapting into their own preclinical/clinical research, use in constrained environments (i.e., neonatal intensive care unit bedside), and use on vulnerable subjects and measurement sites.
This book acts as a primer for radiographers upon performing computed tomography (CT) examinations. The focus resides in radiation physics, radiobiology, anatomy, imaging protocols and image evaluation. It seeks to provide readers insight into the practical and innovative approaches within CT, backed up with key literature and examples in practice. Recent innovations and the importance of new technology to acquire enhanced quality remain a focal point. These are essential in understanding the importance of dose optimization, patient anatomy and common pathology observed. Patient care will remain central in this book, supported with a dedicated chapter discussing effective communication, patient education, informed consent, coupled with the assessment of laboratory results and vital signs. The editors draw from recent publications and clinical expertise, supported with the growing trend of technological advances utilized within the CT environment. Critically, this volume focuses on the role of CT for an array of audiences but, more specifically, undergraduate and postgraduate radiographers worldwide.
Build the foundation necessary for the practice of CT scanning with Computed Tomography: Physical Principles, Clinical Applications, and Quality Control, 5th Edition. Written to meet the varied requirements of radiography students and practitioners, this two-color text provides comprehensive coverage of the physical principles of CT and its clinical applications. The clear, straightforward approach is designed to improve your understanding of sectional anatomic images as they relate to CT and facilitate communication between CT technologists and other medical personnel. Chapter outlines and chapter review questions help you focus your study time and master content. NEW! Three additional chapters reflect the latest industry CT standards in imaging: Radiation Awareness and Safety Campaigns in Computed Tomography, Patient Care Considerations, and Artificial Intelligence: An Overview of Applications in Health and Medical Imaging. UPDATED! More than 509 photos and line drawings visually clarify key concepts. UPDATED! The latest information keeps you up to date on advances in volume CT scanning; CT fluoroscopy; and multislice applications like 3-D imaging, CT angiography, and virtual reality imaging (endoscopy).
This book is written for retinal specialists and clinicians with a special interest in retinal diseases. It presents a collection of images and brief annotations of the microstructures of both the normal and diseased eye captured on swept source optical coherence tomography. The swept-source OCT is a relatively new form of imaging and is able to capture structures and details which previous generations of OCT machines cannot. This type of imaging represents the forefront in ocular imaging. This second edition includes a new chapter on optic nerve conditions and more cases on eye conditions that were imaged with the SS-OCT. It also showcases the use of swept-source OCT for OCT angiography.
This book provides a comprehensive introduction to current state-of-the-art auto-segmentation approaches used in radiation oncology for auto-delineation of organs-of-risk for thoracic radiation treatment planning. Containing the latest, cutting edge technologies and treatments, it explores deep-learning methods, multi-atlas-based methods, and model-based methods that are currently being developed for clinical radiation oncology applications. Each chapter focuses on a specific aspect of algorithm choices and discusses the impact of the different algorithm modules to the algorithm performance as well as the implementation issues for clinical use (including data curation challenges and auto-contour evaluations). This book is an ideal guide for radiation oncology centers looking to learn more about potential auto-segmentation tools for their clinic in addition to medical physicists commissioning auto-segmentation for clinical use. Features: Up-to-date with the latest technologies in the field Edited by leading authorities in the area, with chapter contributions from subject area specialists All approaches presented in this book are validated using a standard benchmark dataset established by the Thoracic Auto-segmentation Challenge held as an event of the 2017 Annual Meeting of American Association of Physicists in Medicine
This book explores the physics of CT dosimetry and provides practical guidance on best practice for medical researchers and practitioners. A rigorous description of the basic physics of CT dosimetry is presented and illustrates flaws of the current methodology. It also contains helpful (and rigorous) shortcuts to reduce the measurement workload for medical physicists. The mathematical rigor is accompanied by easily-understood physical explanations and numerous illustrative figures. Features: Authored by a recognised expert in the field and award-winning teacher Includes derivations for tube current modulation and variable pitch as well as stationary table techniques Explores abnormalities present in dose-tracking software based on CTDI and presents methods to correct them
Neurological applications of PET include using it to identify Alzheimer's Disease, including differentiating between other forms of Dementia, to show causes of seizures that were otherwise unclear, and to diagnose psychiatric disorders like Schizophrenia. Although other books on PET may have a chapter or section on neurological applications, this is the only comprehensive and up-to-date book on neurological PET. It reviews PET in neuroscience with particular emphasis on findings that indicate its potential for improving diagnosis and treatment in neurology and psychiatry. Improving the transfer of the huge scientific developments in brain PET into clinical care will produce tangible human benefit. To this end, NeuroPET focuses on practical and potentially clinically relevant issues and identify solid ground as well as open questions. In addition, the book includes major chapters on the methodological background, including tracer physiology and kinetic modeling, and a comprehensive literature review. Included in this extremely useful package is a CD-ROM that features video clips and interactive navigation in 3D data sets that illustrate the information contained in PET images in major neurological diseases and its potential to improve diagnosis and neurosurgical planning in brain tumors. |
![]() ![]() You may like...
The Cultural Role of Architecture…
Paul Emmons, Jane Lomholt, …
Hardcover
R5,030
Discovery Miles 50 300
Lil Puca Boo and her New Haunted House…
Dorothy Fletcher Bentley
Paperback
R315
Discovery Miles 3 150
Confabulations : Storytelling in…
Paul Emmons, Marcia F. Feuerstein, …
Hardcover
R4,733
Discovery Miles 47 330
|