Books > Science & Mathematics > Chemistry > Organic chemistry > Polymer chemistry
|
Buy Now
Neutron Spin Echo Spectroscopy Viscoelasticity Rheology (Paperback, Softcover reprint of the original 1st ed. 1997)
Loot Price: R1,459
Discovery Miles 14 590
|
|
Neutron Spin Echo Spectroscopy Viscoelasticity Rheology (Paperback, Softcover reprint of the original 1st ed. 1997)
Series: Advances in Polymer Science, 134
Expected to ship within 10 - 15 working days
|
Viscoelasticandtransportpropertiesofpolymersintheliquid(solution,melt)or
liquid-like (rubber) state determine their processing and
application to a large extent and are of basic physical interest
[1-3]. An understanding of these dynamic properties at a molecular
level, therefore, is of great importance.
However,thisunderstandingiscomplicatedbythefactsthatdi?erentmotional
processes may occur on di?erent length scales and that the dynamics
are governed by universal chain properties as well as by the
special chemical structure of the monomer units [4,5]. The earliest
and simplest approach in this direction starts from Langevin
equations with solutions comprising a spectrum of relaxation modes
[1-4]. Special features are the incorporation of entropic forces
(Rouse model, [6]) which relax uctuations of reduced entropy, and
of hydrodynamic interactions (Zimm model, [7]) which couple
segmental motions via long-range back ow elds in polymer solutions,
and the inclusion of topological constraints or entanglements
(reptation or tube model, [8-10]) which are mutually imposed within
a dense ensemble of chains. Another approach, neglecting the
details of the chemical structure and
concentratingontheuniversalelementsofchainrelaxation,isbasedondynamic
scalingconsiderations[4,11].Inparticularinpolymersolutions,thisapproach
o?ers an elegant tool to specify the general trends of polymer
dynamics, although it su?ers from the lack of a molecular
interpretation. A real test of these theoretical approaches
requires microscopic methods, which simultaneously give direct
access to the space and time evolution of the segmental di?usion.
Here, quasi-elastic scattering methods play a crucial role
sincetheyallowthemeasurementofthecorrespondingcorrelationfunctions.In
particular,thehigh-resolutionneutronspinecho(NSE)spectroscopy[12-15]is
very suitable for such investigations since this method covers an
appropriate range in time (0.005)t/ns)40) and space (r/nm [15).
Furthermore, the
possibilityoflabellingbyhydrogen-deuteriumexchangeallowstheobservation
of single-chain behavior even in the melt.
General
Is the information for this product incomplete, wrong or inappropriate?
Let us know about it.
Does this product have an incorrect or missing image?
Send us a new image.
Is this product missing categories?
Add more categories.
Review This Product
No reviews yet - be the first to create one!
|
|
Email address subscribed successfully.
A activation email has been sent to you.
Please click the link in that email to activate your subscription.