Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 4 of 4 matches in All Departments
Elementary Number Theory, Gove Effinger, Gary L. Mullen This text is intended to be used as an undergraduate introduction to the theory of numbers. The authors have been immersed in this area of mathematics for many years and hope that this text will inspire students (and instructors) to study, understand, and come to love this truly beautiful subject. Each chapter, after an introduction, develops a new topic clearly broken out in sections which include theoretical material together with numerous examples, each worked out in considerable detail. At the end of each chapter, after a summary of the topic, there are a number of solved problems, also worked out in detail, followed by a set of supplementary problems. These latter problems give students a chance to test their own understanding of the material; solutions to some but not all of them complete the chapter. The first eight chapters discuss some standard material in elementary number theory. The remaining chapters discuss topics which might be considered a bit more advanced. The text closes with a chapter on Open Problems in Number Theory. Students (and of course instructors) are strongly encouraged to study this chapter carefully and fully realize that not all mathematical issues and problems have been resolved! There is still much to be learned and many questions to be answered in mathematics in general and in number theory in particular.
Elementary Number Theory, Gove Effinger, Gary L. Mullen This text is intended to be used as an undergraduate introduction to the theory of numbers. The authors have been immersed in this area of mathematics for many years and hope that this text will inspire students (and instructors) to study, understand, and come to love this truly beautiful subject. Each chapter, after an introduction, develops a new topic clearly broken out in sections which include theoretical material together with numerous examples, each worked out in considerable detail. At the end of each chapter, after a summary of the topic, there are a number of solved problems, also worked out in detail, followed by a set of supplementary problems. These latter problems give students a chance to test their own understanding of the material; solutions to some but not all of them complete the chapter. The first eight chapters discuss some standard material in elementary number theory. The remaining chapters discuss topics which might be considered a bit more advanced. The text closes with a chapter on Open Problems in Number Theory. Students (and of course instructors) are strongly encouraged to study this chapter carefully and fully realize that not all mathematical issues and problems have been resolved! There is still much to be learned and many questions to be answered in mathematics in general and in number theory in particular.
An Elementary Transition to Abstract Mathematics will help students move from introductory courses to those where rigor and proof play a much greater role. The text is organized into five basic parts: the first looks back on selected topics from pre-calculus and calculus, treating them more rigorously, and it covers various proof techniques; the second part covers induction, sets, functions, cardinality, complex numbers, permutations, and matrices; the third part introduces basic number theory including applications to cryptography; the fourth part introduces key objects from abstract algebra; and the final part focuses on polynomials. Features: The material is presented in many short chapters, so that one concept at a time can be absorbed by the student. Two "looking back" chapters at the outset (pre-calculus and calculus) are designed to start the student's transition by working with familiar concepts. Many examples of every concept are given to make the material as concrete as possible and to emphasize the importance of searching for patterns. A conversational writing style is employed throughout in an effort to encourage active learning on the part of the student.
The volume is a collection of 20 refereed articles written in connection with lectures presented at the 12th International Conference on Finite Fields and Their Applications ('Fq12') at Skidmore College in Saratoga Springs, NY in July 2015. Finite fields are central to modern cryptography and secure digital communication, and hence must evolve rapidly to keep pace with new technologies. Topics in this volume include cryptography, coding theory, structure of finite fields, algorithms, curves over finite fields, and further applications.Contributors will include: Antoine Joux (Fondation Partenariale de l'UPMC, France); Gary Mullen (Penn State University, USA); Gohar Kyureghyan (Otto-von-Guericke Universitat, Germany); Gary McGuire (University College Dublin, Ireland); Michel Lavrauw (Universita degli Studi di Padova, Italy); Kirsten Eisentraeger (Penn State University, USA); Renate Scheidler (University of Calgary, Canada); Michael Zieve (University of Michigan, USA).
|
You may like...
How Did We Get Here? - A Girl's Guide to…
Mpoomy Ledwaba
Paperback
(1)
|