Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 25 of 39 matches in All Departments
This book evaluates the influence of process variations (e.g. work-function fluctuations) and radiation-induced soft errors in a set of logic cells using FinFET technology, considering the 7nm technological node as a case study. Moreover, for accurate soft error estimation, the authors adopt a radiation event generator tool (MUSCA SEP3), which deals both with layout features and electrical properties of devices. The authors also explore four circuit-level techniques (e.g. transistor reordering, decoupling cells, Schmitt Trigger, and sleep transistor) as alternatives to attenuate the unwanted effects on FinFET logic cells. This book also evaluates the mitigation tendency when different levels of process variation, transistor sizing, and radiation particle characteristics are applied in the design. An overall comparison of all methods addressed by this work is provided allowing to trace a trade-off between the reliability gains and the design penalties of each approach regarding the area, performance, power consumption, single event transient (SET) pulse width, and SET cross-section.
This book contains extended and revised versions of the best papers presented at the 27th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2019, held in Cusco, Peru, in October 2019. The 15 full papers included in this volume were carefully reviewed and selected from the 28 papers (out of 82 submissions) presented at the conference. The papers discuss the latest academic and industrial results and developments as well as future trends in the field of System-on-Chip (SoC) design, considering the challenges of nano-scale, state-of-the-art and emerging manufacturing technologies. In particular they address cutting-edge research fields like heterogeneous, neuromorphic and brain-inspired, biologically-inspired, approximate computing systems.
This book describes new and effective methodologies for modeling, analyzing and mitigating cell-internal signal electromigration in nanoCMOS, with significant circuit lifetime improvements and no impact on performance, area and power. The authors are the first to analyze and propose a solution for the electromigration effects inside logic cells of a circuit. They show in this book that an interconnect inside a cell can fail reducing considerably the circuit lifetime and they demonstrate a methodology to optimize the lifetime of circuits, by placing the output, Vdd and Vss pin of the cells in the less critical regions, where the electromigration effects are reduced. Readers will be enabled to apply this methodology only for the critical cells in the circuit, avoiding impact in the circuit delay, area and performance, thus increasing the lifetime of the circuit without loss in other characteristics.
This book contains extended and revised versions of the best papers presented at the 28th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2020, held in Salt Lake City, UT, USA, in October 2020.*The 16 full papers included in this volume were carefully reviewed and selected from the 38 papers (out of 74 submissions) presented at the conference. The papers discuss the latest academic and industrial results and developments as well as future trends in the field of System-on-Chip (SoC) design, considering the challenges of nano-scale, state-of-the-art and emerging manufacturing technologies. In particular they address cutting-edge research fields like low-power design of RF, analog and mixed-signal circuits, EDA tools for the synthesis and verification of heterogenous SoCs, accelerators for cryptography and deep learning and on-chip Interconnection system, reliability and testing, and integration of 3D-ICs. *The conference was held virtually.
This book presents physical understanding, modeling and simulation, on-chip characterization, layout solutions, and design techniques that are effective to enhance the reliability of various circuit units. The authors provide readers with techniques for state of the art and future technologies, ranging from technology modeling, fault detection and analysis, circuit hardening, and reliability management.
This book is the second of two volumes addressing the design challenges associated with new generations of semiconductor technology. The various chapters are compiled from tutorials presented at workshops in recent years by prominent authors from all over the world. Technology, productivity and quality are the main aspects under consideration to establish the major requirements for the design and test of upcoming systems on a chip.
This book contains extended and revised versions of the best papers presented at the 18th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2010, held in Madrid, Spain, in September 2010. The 14 papers included in the book were carefully reviewed and selected from the 52 full papers presented at the conference. The papers cover a wide variety of excellence in VLSI technology and advanced research. They address the current trend toward increasing chip integration and technology process advancements bringing about stimulating new challenges both at the physical and system-design levels, as well as in the test of theses systems.
This book contains extended and revised versions of the best papers that were p- sented during the 16th edition of the IFIP/IEEE WG10.5 International Conference on Very Large Scale Integration, a global System-on-a-Chip Design & CAD conference. The 16th conference was held at the Grand Hotel of Rhodes Island, Greece (October 13-15, 2008). Previous conferences have taken place in Edinburgh, Trondheim, V- couver, Munich, Grenoble, Tokyo, Gramado, Lisbon, Montpellier, Darmstadt, Perth, Nice and Atlanta. VLSI-SoC 2008 was the 16th in a series of international conferences sponsored by IFIP TC 10 Working Group 10.5 and IEEE CEDA that explores the state of the art and the new developments in the field of VLSI systems and their designs. The purpose of the conference was to provide a forum to exchange ideas and to present industrial and research results in the fields of VLSI/ULSI systems, embedded systems and - croelectronic design and test.
Fault-tolerance in integrated circuits is not an exclusive concern regarding space designers or highly-reliable application engineers. Rather, designers of next generation products must cope with reduced margin noises due to technological advances. The continuous evolution of the fabrication technology process of semiconductor components, in terms of transistor geometry shrinking, power supply, speed, and logic density, has significantly reduced the reliability of very deep submicron integrated circuits, in face of the various internal and external sources of noise. The very popular Field Programmable Gate Arrays, customizable by SRAM cells, are a consequence of the integrated circuit evolution with millions of memory cells to implement the logic, embedded memories, routing, and more recently with embedded microprocessors cores. These re-programmable systems-on-chip platforms must be fault-tolerant to cope with present days requirements. This book discusses fault-tolerance techniques for SRAM-based Field Programmable Gate Arrays (FPGAs). It starts by showing the model of the problem and the upset effects in the programmable architecture. to protect integrated circuits against errors. A large set of methods for designing fault tolerance systems in SRAM-based FPGAs is described. Some presented techniques are based on developing a new fault-tolerant architecture with new robustness FPGA elements. Other techniques are based on protecting the high-level hardware description before the synthesis in the FPGA. The reader has the flexibility of choosing the most suitable fault-tolerance technique for its project and to compare a set of fault tolerant techniques for programmable logic applications.
This book contains extended and revised versions of the best papers that were presented during the fifteenth edition of the IFIP/IEEE WG10.5 International Conference on Very Large Scale Integration, a global System-on-a-Chip Design & CAD conference. The 15th conference was held at the Georgia Institute of Technology, Atlanta, USA (October 15-17, 2007). Previous conferences have taken place in Edinburgh, Trondheim, Vancouver, Munich, Grenoble, Tokyo, Gramado, Lisbon, Montpellier, Darmstadt, Perth and Nice. The purpose of this conference, sponsored by IFIP TC 10 Working Group 10.5 and by the IEEE Council on Electronic Design Automation (CEDA), is to provide a forum to exchange ideas and show industrial and academic research results in the field of microelectronics design. The current trend toward increasing chip integration and technology process advancements brings about stimulating new challenges both at the physical and system-design levels, as well in the test of these systems. VLSI-SoC conferences aim to address these exciting new issues.
This book contains extended and revised versions of the best papers that were presented during the thirteenth edition of the IFIP TC 10 International Conference on Very Large Scale Integration, a Global System-on-Chip Design and CAD conference. The purpose of this conference is to provide a forum to exchange ideas and show industrial and academic research results in the field of microelectronics design. The current trend toward increasing chip integration and technology process advancements brings about stimulating new challenges both at the physical and system-design levels, as well as in the test of these systems.
With the development of Very-Deep Sub-Micron technologies, process variability is becoming increasingly important and is a very important issue in the design of complex circuits. Process variability is the statistical variation of process parameters, meaning that these parameters do not have always the same value, but become a random variable, with a given mean value and standard deviation. This effect can lead to several issues in digital circuit design. The logical consequence of this parameter variation is that circuit characteristics, as delay and power, also become random variables. Because of the delay variability, not all circuits will now have the same performance, but some will be faster and some slower. However, the slowest circuits may be so slow that they will not be appropriate for sale. On the other hand, the fastest circuits that could be sold for a higher price can be very leaky, and also not very appropriate for sale. A main consequence of power variability is that the power consumption of some circuits will be different than expected, reducing reliability, average life expectancy and warranty of products. Sometimes the circuits will not work at all, due to reasons associated with process variations. At the end, these effects result in lower yield and lower profitability. To understand these effects, it is necessary to study the consequences of variability in several aspects of circuit design, like logic gates, storage elements, clock distribution, and any other that can be affected by process variations. The main focus of this book will be storage elements.
This book contains extended and revised versions of the best papers presented at the 17th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2009, held in Florian polis, Brazil, in October 2009. The 8 papers included in the book together with two keynote talks were carefully reviewed and selected from 27 papers presented at the conference. The papers cover a wide variety of excellence in VLSI technology and advanced research addressing the current trend toward increasing chip integration and technology process advancements bringing about stimulating new challenges both at the physical and system-design levels, as well as in the test of theses systems.
This book describes the benefits and drawbacks inherent in the use of virtual platforms (VPs) to perform fast and early soft error assessment of multicore systems. The authors show that VPs provide engineers with appropriate means to investigate new and more efficient fault injection and mitigation techniques. Coverage also includes the use of machine learning techniques (e.g., linear regression) to speed-up the soft error evaluation process by pinpointing parameters (e.g., architectural) with the most substantial impact on the software stack dependability. This book provides valuable information and insight through more than 3 million individual scenarios and 2 million simulation-hours. Further, this book explores machine learning techniques usage to navigate large fault injection datasets.
This book contains extended and revised versions of the best papers presented during the fourteenth IFIP TC 10/WG 10.5 International Conference on Very Large Scale Integration. This conference provides a forum to exchange ideas and show industrial and academic research results in microelectronics design. The current trend toward increasing chip integration and technology process advancements brings about stimulating new challenges both at the physical and system-design levels.
This book contains extended and revised versions of the best papers presented at the 29th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2021, held in Singapore, in October 2021*. The 12 full papers included in this volume were carefully reviewed and selected from the 44 papers (out of 75 submissions) presented at the conference. The papers discuss the latest academic and industrial results and developments as well as future trends in the field of System-on-Chip (SoC) design, considering the challenges of nano-scale, state-of-the-art and emerging manufacturing technologies. In particular they address cutting-edge research fields like low-power design of RF, analog and mixed-signal circuits, EDA tools for the synthesis and verification of heterogenous SoCs, accelerators for cryptography and deep learning and on-chip Interconnection system, reliability and testing, and integration of 3D-ICs. *The conference was held virtually.
This book contains extended and revised versions of the best papers that have been presented during the twelfth edition of the IFIP TC10/WG10.5 International Conference on Very Large Scale Integration, a Global System-on-a-Chip Design & CAD Conference. The 12* edition was held at the Lufthansa Training Center in Seeheim-Jugenheim, south of Darmstadt, Germany (December 1-3, 2003). Previous conferences have taken place in Edinburgh (81), Trondheim (83), Tokyo (85), Vancouver (87), Munich (89), Edinburgh (91), Grenoble (93), Tokyo (95), Gramado (97), Lisbon (99)andMontpellier(01). The purpose of this conference, sponsored by IFIP TC 10 Working Group 10.5, is to provide a forum to exchange ideas and show research results in the field of microelectronics design. The current trend toward increasing chip integration brings about exhilarating new challenges both at the physical and system-design levels: this conference aims to address these exciting new issues. The 2003 edition of VLSI-SoC conserved the traditional structure, which has been successful in previous editions. The quality of submissions (142 papers) made the selection process difficult, but finally 57 papers and 14 posters were accepted for presentation in VLSI-SoC 2003. Submissions came from Austria, Bulgaria, Brazil, Canada, Egypt, England, Estonia, Finland, France, Germany, Greece, Hungary, India, Iran, Israel, Italy, Japan, Korea, Malaysia, Mexico, Netherlands, Poland, Portugal, Romania, Spain, Sweden, Taiwan and the United States of America. From 57 papers presented at the conference, 18 were selected to have an extended and revised version included in this book.
An incisive overview of the macroeconomics of financial crises—essential reading for students and policy experts alike With alarming frequency, modern economies go through macro-financial crashes that arise from the financial sector and spread to the broader economy, inflicting deep and prolonged recessions. A Crash Course on Crises brings together the latest cutting-edge economic research to identify the seeds of these crashes, reveal their triggers and consequences, and explain what policymakers can do about them. Each of the book’s ten self-contained chapters introduces readers to a key economic force and provides case studies that illustrate how that force was dominant. Markus Brunnermeier and Ricardo Reis show how the run-up phase of a crisis often occurs in ways that are preventable but that may go unnoticed and discuss how debt contracts, banks, and a search for safety can act as triggers and amplifiers that drive the economy to crash. Brunnermeier and Reis then explain how monetary, fiscal, and exchange-rate policies can respond to crises and prevent them from becoming persistent. With case studies ranging from Chile in the 1970s to the COVID-19 pandemic, A Crash Course on Crises synthesizes a vast literature into ten simple, accessible ideas and illuminates these concepts using novel diagrams and a clear analytical framework.
'Radiation Effects on Embedded Systems' provides the reader with the major guidelines for coping with radiation effects on components supposed to be included in today's application devoted to operate in space, but also in atmosphere at high altitude or at ground level. It contains a set of chapters based on the tutorials presented at the International School on Effects of Radiation on Embedded Systems for Space Applications (SERESSA) that was held in Manaus, Brazil, from 20 to 25 November 2005.
This book contains extended and revised versions of the best papers presented at the 28th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2020, held in Salt Lake City, UT, USA, in October 2020.*The 16 full papers included in this volume were carefully reviewed and selected from the 38 papers (out of 74 submissions) presented at the conference. The papers discuss the latest academic and industrial results and developments as well as future trends in the field of System-on-Chip (SoC) design, considering the challenges of nano-scale, state-of-the-art and emerging manufacturing technologies. In particular they address cutting-edge research fields like low-power design of RF, analog and mixed-signal circuits, EDA tools for the synthesis and verification of heterogenous SoCs, accelerators for cryptography and deep learning and on-chip Interconnection system, reliability and testing, and integration of 3D-ICs. *The conference was held virtually.
This book describes the benefits and drawbacks inherent in the use of virtual platforms (VPs) to perform fast and early soft error assessment of multicore systems. The authors show that VPs provide engineers with appropriate means to investigate new and more efficient fault injection and mitigation techniques. Coverage also includes the use of machine learning techniques (e.g., linear regression) to speed-up the soft error evaluation process by pinpointing parameters (e.g., architectural) with the most substantial impact on the software stack dependability. This book provides valuable information and insight through more than 3 million individual scenarios and 2 million simulation-hours. Further, this book explores machine learning techniques usage to navigate large fault injection datasets.
This book contains extended and revised versions of the best papers presented at the 27th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2019, held in Cusco, Peru, in October 2019. The 15 full papers included in this volume were carefully reviewed and selected from the 28 papers (out of 82 submissions) presented at the conference. The papers discuss the latest academic and industrial results and developments as well as future trends in the field of System-on-Chip (SoC) design, considering the challenges of nano-scale, state-of-the-art and emerging manufacturing technologies. In particular they address cutting-edge research fields like heterogeneous, neuromorphic and brain-inspired, biologically-inspired, approximate computing systems.
This book describes new and effective methodologies for modeling, analyzing and mitigating cell-internal signal electromigration in nanoCMOS, with significant circuit lifetime improvements and no impact on performance, area and power. The authors are the first to analyze and propose a solution for the electromigration effects inside logic cells of a circuit. They show in this book that an interconnect inside a cell can fail reducing considerably the circuit lifetime and they demonstrate a methodology to optimize the lifetime of circuits, by placing the output, Vdd and Vss pin of the cells in the less critical regions, where the electromigration effects are reduced. Readers will be enabled to apply this methodology only for the critical cells in the circuit, avoiding impact in the circuit delay, area and performance, thus increasing the lifetime of the circuit without loss in other characteristics.
With the development of Very-Deep Sub-Micron technologies, process variability is becoming increasingly important and is a very important issue in the design of complex circuits. Process variability is the statistical variation of process parameters, meaning that these parameters do not have always the same value, but become a random variable, with a given mean value and standard deviation. This effect can lead to several issues in digital circuit design. The logical consequence of this parameter variation is that circuit characteristics, as delay and power, also become random variables. Because of the delay variability, not all circuits will now have the same performance, but some will be faster and some slower. However, the slowest circuits may be so slow that they will not be appropriate for sale. On the other hand, the fastest circuits that could be sold for a higher price can be very leaky, and also not very appropriate for sale. A main consequence of power variability is that the power consumption of some circuits will be different than expected, reducing reliability, average life expectancy and warranty of products. Sometimes the circuits will not work at all, due to reasons associated with process variations. At the end, these effects result in lower yield and lower profitability. To understand these effects, it is necessary to study the consequences of variability in several aspects of circuit design, like logic gates, storage elements, clock distribution, and any other that can be affected by process variations. The main focus of this book will be storage elements.
This book contains a selection of tutorials on hot topics in information technology, which were presented at the IFIP World Computer Congress. WCC2004 took place at the Centre de Congres Pierre Baudis, in Toulouse, France, from 22 to 27 August 2004. The 11 chapters included in the book were chosen from tutorials proposals submitted to WCC2004. These papers report on several important and state-of-the-art topics on information technology such as: Quality of Service in Information Networks Risk-Driven Development of Security-Critical Systems Using UMLsec Developing Portable Software Formal Reasoning About Systems, Software and Hardware Using Functionals, Predicates and Relations The Problematic of Distributed Systems Supervision Software Rejuvenation - Modeling and Analysis Test and Design-for-Test of Mixed-Signal Integrated Circuits Web Services Applications of Multi-Agent Systems Discrete Event Simulation Human-Centered Automation We hereby would like to thank IFIP and more specifically WCC2004 Tutorials Committee and the authors for their contribution. We also would like to thank the congress organizers who have done a great job. Ricardo Reis Editor QUALITY OF SERVICE IN INFORMATION NETWORKS Augusto Casaca IST/INESC, R. Alves Redol, 1000-029, Lisboa, Portugal. Abstract: This article introduces the problems concerned with the provision of end-- end quality of service in IP networks, which are the basis of information networks, describes the existing solutions for that provision and presents some of the current research items on the subject. Key words: Information networks, IP networks, Integrated Services, Differentiated Services, Multiprotocol Label Switching, UMTS." |
You may like...
Mission Impossible 6: Fallout
Tom Cruise, Henry Cavill, …
Blu-ray disc
(1)
A Shakespeare Story: Shakespeare Stories…
Andrew Matthews
Paperback
|