Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Showing 1 - 11 of 11 matches in All Departments
This volume is a compilation of laboratory protocols and methodology required for the study of molecular chaperones and the cellular stress response. Chapters detail stress response in Hsf1, Hsf2 and Hsf4 knockout mice, mapping HSP interaction networks, the LUminescence-based Mammalian IntERactome (LUMIER), Hsp70 biology, protein folding activity of Hsp90, cytotoxicity of HSP inhibitors, computational approaches for modeling allosteric Hsp90 interactions, HSPs in immunity and vaccine development , and biologies of Hsp70 and Hsp90. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Chaperones: Methods and Protocols aims to ensure successful results in the further study of this vital field.
The proteome consists of a complex mixture of proteins each of which need to be folded correctly in order to function for the health of the organism, and many of these proteins require molecular chaperones to reach the correct conformation and, in some cases, to remain in a folded form. In "Molecular Chaperones: Methods and Protocols," expert researchers address a wide variety of approaches to the study these mechanisms, featuring the workings of heat shock proteins and heat shock transcription factors, "in vitro" and "in vivo." Written in the highly successful "Methods in Molecular Biology " series format, chapters features introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, "Molecular Chaperones: Methods and Protocols" serves as an ideal guide for all scientists who wish to pursue this vital biological action and its impact on human health and disease."
Prokaryotic and Eukaryotic Heat Shock Proteins in Infectious Disease provides the most current review of the literature relating to the role and influence of heat shock (stress) proteins on the establishment, progression and resolution of infectious disease. Written by leaders in the field of heat shock proteins (HSP) and their biological and immunological properties, the contributors provide a fascinating insight into the complex relationship between, and the involvement of prokaryotic and eukaryotic HSP in disease states. It has been known for some considerable time that heat shock proteins from prokaryotic organisms are immunodominant molecules that are intimately involved in the induction of potential protective inflammatory responses, and this aspect of HSP biology is updated herein. In addition to regulating heat shock protein gene expression, the transcription factor HSF1 also appears to play an important role in regulating immune responses to infection. Heat shock proteins are now known to influence infectious disease processes in a number of diverse ways: they are involved in the propagation of prions, the replication and morphogenesis of viruses, and the resistance of parasites to chemotherapy. These proteins also appear to be important mediators of bacteria-host interactions and inflammation, the latter via interactions with cell surface molecules and structures such as Toll-like receptors and lipid rafts. Heat shock proteins can be expressed on the surface of infected cells, and this is likely to provide a target for the innate immune response. Elevated levels of circulating HSP are present in infectious diseases and these proteins might therefore regulate inflammatory responses to pathogenic challenge on a systemic basis. Heat shock proteins are also implicated in the impact of genital tract infections on the reproductive outcome, as well as in the local and systemic consequences of periodontal disease. Fever-range temperatures can induce the expression of heat shock proteins, and the final chapter in the book examines the influence of fever-range hyperthermia on a variety of cells and the organization of plasma membranes. This book is an essential read for graduates and postgraduates in Biology, pro- and eukaryotic Biochemistry, Immunology, Microbiology, Inflammatory and Infectious Disease, and Pathology.
Heat Shock Proteins and Plants provides the most up-to-date and concise reviews and progress on the role of heat shock proteins in plant biology, structure and function and is subdivided into chapters focused on Small Plant HSPs (Part I), Larger Plant HSPs (Part II) and HSPs for Therapeutic Gain (Part III). This book is written by eminent leaders and experts from around the world and is an important reference book and a must-read for undergraduate, postgraduate students and researchers in the fields of Agriculture, Botany, Crop Research, Plant Genetics and Biochemistry, Biotechnology, Drug Development and Pharmaceutical Sciences.
This book surveys the current knowledge concerning the expression and function of stress proteins in different organisms, ranging from prokaryotes to humans. It provides an overview of the diversity and complex evolutionary history of cell stress proteins and describes their function and expression in different eukaryote models. The book will appeal to researchers and scientists in biochemistry, cell biology, microbiology, immunology, and genetics.
Heat shock proteins are emerging as important molecules in the development of cancer and as key targets in cancer therapy. These proteins enhance the growth of cancer cells and protect tumors from treatments such as drugs or surgery. However, new drugs have recently been developed particularly those targeting heat shock protein 90. As heat shock protein 90 functions to stabilize many of the oncogenes and growth promoting proteins in cancer cells, such drugs have broad specificity in many types of cancer cell and offer the possibility of evading the development of resistance through point mutation or use of compensatory pathways. Heat shock proteins have a further property that makes them tempting targets in cancer immunotherapy. These proteins have the ability to induce an inflammatory response when released in tumors and to carry tumor antigens to antigen presenting cells. They have thus become important components of anticancer vaccines. Overall, heat shock proteins are important new targets in molecular cancer therapy and can be approached in a number of contrasting approaches to therapy.
Heat Shock Proteins and Plants provides the most up-to-date and concise reviews and progress on the role of heat shock proteins in plant biology, structure and function and is subdivided into chapters focused on Small Plant HSPs (Part I), Larger Plant HSPs (Part II) and HSPs for Therapeutic Gain (Part III). This book is written by eminent leaders and experts from around the world and is an important reference book and a must-read for undergraduate, postgraduate students and researchers in the fields of Agriculture, Botany, Crop Research, Plant Genetics and Biochemistry, Biotechnology, Drug Development and Pharmaceutical Sciences.
The proteome consists of a complex mixture of proteins each of which need to be folded correctly in order to function for the health of the organism, and many of these proteins require molecular chaperones to reach the correct conformation and, in some cases, to remain in a folded form. In Molecular Chaperones: Methods and Protocols, expert researchers address a wide variety of approaches to the study these mechanisms, featuring the workings of heat shock proteins and heat shock transcription factors, in vitro and in vivo. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters features introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Molecular Chaperones: Methods and Protocols serves as an ideal guide for all scientists who wish to pursue this vital biological action and its impact on human health and disease.
Prokaryotic and Eukaryotic Heat Shock Proteins in Infectious Disease provides the most current review of the literature relating to the role and influence of heat shock (stress) proteins on the establishment, progression and resolution of infectious disease. Written by leaders in the field of heat shock proteins (HSP) and their biological and immunological properties, the contributors provide a fascinating insight into the complex relationship between, and the involvement of prokaryotic and eukaryotic HSP in disease states. It has been known for some considerable time that heat shock proteins from prokaryotic organisms are immunodominant molecules that are intimately involved in the induction of potential protective inflammatory responses, and this aspect of HSP biology is updated herein. In addition to regulating heat shock protein gene expression, the transcription factor HSF1 also appears to play an important role in regulating immune responses to infection. Heat shock proteins are now known to influence infectious disease processes in a number of diverse ways: they are involved in the propagation of prions, the replication and morphogenesis of viruses, and the resistance of parasites to chemotherapy. These proteins also appear to be important mediators of bacteria-host interactions and inflammation, the latter via interactions with cell surface molecules and structures such as Toll-like receptors and lipid rafts. Heat shock proteins can be expressed on the surface of infected cells, and this is likely to provide a target for the innate immune response. Elevated levels of circulating HSP are present in infectious diseases and these proteins might therefore regulate inflammatory responses to pathogenic challenge on a systemic basis. Heat shock proteins are also implicated in the impact of genital tract infections on the reproductive outcome, as well as in the local and systemic consequences of periodontal disease. Fever-range temperatures can induce the expression of heat shock proteins, and the final chapter in the book examines the influence of fever-range hyperthermia on a variety of cells and the organization of plasma membranes. This book is an essential read for graduates and postgraduates in Biology, pro- and eukaryotic Biochemistry, Immunology, Microbiology, Inflammatory and Infectious Disease, and Pathology.
This book surveys the current knowledge concerning the expression and function of stress proteins in different organisms, ranging from prokaryotes to humans. It provides an overview of the diversity and complex evolutionary history of cell stress proteins and describes their function and expression in different eukaryote models. The book will appeal to researchers and scientists in biochemistry, cell biology, microbiology, immunology, and genetics.
Heat shock proteins are emerging as important molecules in the development of cancer and as key targets in cancer therapy. These proteins enhance the growth of cancer cells and protect tumors from treatments such as drugs or surgery. However, new drugs have recently been developed particularly those targeting heat shock protein 90. As heat shock protein 90 functions to stabilize many of the oncogenes and growth promoting proteins in cancer cells, such drugs have broad specificity in many types of cancer cell and offer the possibility of evading the development of resistance through point mutation or use of compensatory pathways. Heat shock proteins have a further property that makes them tempting targets in cancer immunotherapy. These proteins have the ability to induce an inflammatory response when released in tumors and to carry tumor antigens to antigen presenting cells. They have thus become important components of anticancer vaccines. Overall, heat shock proteins are important new targets in molecular cancer therapy and can be approached in a number of contrasting approaches to therapy.
|
You may like...
|