![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra
This volume contains 19 articles written by speakers at the Advanced Study Institute on 'Modular representations and subgroup structure of al gebraic groups and related finite groups' held at the Isaac Newton Institute, Cambridge from 23rd June to 4th July 1997. We acknowledge with gratitude the financial support given by the NATO Science Committee to enable this ASI to take place. Generous financial support was also provided by the European Union. We are also pleased to acknowledge funds given by EPSRC to the Newton Institute which were used to support the meeting. It is a pleasure to thank the Director of the Isaac Newton Institute, Professor Keith Moffatt, and the staff of the Institute for their dedicated work which did so much to further the success of the meeting. The editors wish to thank Dr. Ross Lawther and Dr. Nick Inglis most warmly for their help in the production of this volume. Dr. Lawther in particular made an invaluable contribution in preparing the volume for submission to the publishers. Finally we wish to thank the distinguished speakers at the ASI who agreed to write articles for this volume based on their lectures at the meet ing. We hope that the volume will stimulate further significant advances in the theory of algebraic groups."
This solid volume discusses all the key topics in detail, including classification, orbit structure, representations, universal constructions, and abstract analogues. Open problems are discussed as they arise and many useful exercises are included.
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceara, Fortaleza, BrasilWalter D. Neumann, Columbia University, New York, USAMarkus J. Pflaum, University of Colorado, Boulder, USADierk Schleicher, Jacobs University, Bremen, GermanyKatrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019)Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019)Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019)Volker Mayer, Mariusz Urbanski, and Anna Zdunik, Random and Conformal Dynamical Systems (2021)Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
This book has grown out of a set of lecture notes I had prepared for a course on Lie groups in 1966. When I lectured again on the subject in 1972, I revised the notes substantially. It is the revised version that is now appearing in book form. The theory of Lie groups plays a fundamental role in many areas of mathematics. There are a number of books on the subject currently available -most notably those of Chevalley, Jacobson, and Bourbaki-which present various aspects of the theory in great depth. However, 1 feei there is a need for a single book in English which develops both the algebraic and analytic aspects of the theory and which goes into the representation theory of semi simple Lie groups and Lie algebras in detail. This book is an attempt to fiii this need. It is my hope that this book will introduce the aspiring graduate student as well as the nonspecialist mathematician to the fundamental themes of the subject. I have made no attempt to discuss infinite-dimensional representations. This is a very active field, and a proper treatment of it would require another volume (if not more) of this size. However, the reader who wants to take up this theory will find that this book prepares him reasonably well for that task."
The articles in this volume are devoted to: - moduli of coherent sheaves; - principal bundles and sheaves and their moduli; - new insights into Geometric Invariant Theory; - stacks of shtukas and their compactifications; - algebraic cycles vs. commutative algebra; - Thom polynomials of singularities; - zero schemes of sections of vector bundles. The main purpose is to give "friendly" introductions to the above topics through a series of comprehensive texts starting from a very elementary level and ending with a discussion of current research. In these texts, the reader will find classical results and methods as well as new ones. The book is addressed to researchers and graduate students in algebraic geometry, algebraic topology and singularity theory. Most of the material presented in the volume has not appeared in books before. Contributors: Jean-Marc DrA(c)zet, TomAs L. GA3mez, Adrian Langer, Piotr Pragacz, Alexander H. W. Schmitt, Vasudevan Srinivas, Ngo Dac Tuan, Andrzej Weber
This volume contains a selection of papers presented at the 1991 Conrad Conference, held in Gainesville, Florida, USA, in December, 1991. Together, these give an overview of some recent advances in the area of ordered algebraic structures. The first part of the book is devoted to ordered permutation groups and universal, as well as model-theoretic, aspects. The second part deals with material variously connected to general topology and functional analysis. Collectively, the contents of the book demonstrate the wide applicability of order-theoretic methods, and how ordered algebraic structures have connections with many research disciplines. For researchers and graduate students whose work involves ordered algebraic structures.
This textbook provides a readable account of the examples and fundamental results of groups from a theoretical and geometrical point of view. This is the second book of the set of two books on groups theory. Topics on linear transformation and linear groups, group actions on sets, Sylow's theorem, simple groups, products of groups, normal series, free groups, platonic solids, Frieze and wallpaper symmetry groups and characters of groups have been discussed in depth. Covering all major topics, this book is targeted to advanced undergraduate students of mathematics with no prerequisite knowledge of the discussed topics. Each section ends with a set of worked-out problems and supplementary exercises to challenge the knowledge and ability of the reader.
Every group is represented in many ways as an epimorphic image of a free group. It seems therefore futile to search for methods involving generators and relations which can be used to detect the structure of a group. Nevertheless, results in the indicated direction exist. The clue is to ask the right question. Classical geometry is a typical example in which the factorization of a motion into reflections or, more generally, of a collineation into central collineations, supplies valuable information on the geometric and algebraic structure. This mode of investigation has gained momentum since the end of last century. The tradition of geometric-algebraic interplay brought forward two branches of research which are documented in Parts I and II of these Proceedings. Part II deals with the theory of reflection geometry which culminated in Bachmann's work where the geometric information is encoded in properties of the group of motions expressed by relations in the generating involutions. This approach is the backbone of the classification of motion groups for the classical unitary and orthogonal planes. The axioms in this char acterization are natural and plausible. They provoke the study of consequences of subsets of axioms which also yield natural geometries whose exploration is rewarding. Bachmann's central axiom is the three reflection theorem, showing that the number of reflections needed to express a motion is of great importance."
Growing specialization and diversification have brought a hor'st of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are sudden ly seen to be related. Further, the kind and level of sophistication of mathematics applied invarious sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics. This programme, Mathematics and Its Applications, is devoted to such (new) interrelations as exempli gratia: - a central concept which plays an important role in several different mathematical andjor scientific specialized areas; - new applications of the results and ideas from one area of scien tific endeavor into another; - influences which the results, problems and concepts of one field of enquiry have and have had on the development of another."
Algorithms for Computer Algebra is the first comprehensive textbook to be published on the topic of computational symbolic mathematics. The book first develops the foundational material from modern algebra that is required for subsequent topics. It then presents a thorough development of modern computational algorithms for such problems as multivariate polynomial arithmetic and greatest common divisor calculations, factorization of multivariate polynomials, symbolic solution of linear and polynomial systems of equations, and analytic integration of elementary functions. Numerous examples are integrated into the text as an aid to understanding the mathematical development. The algorithms developed for each topic are presented in a Pascal-like computer language. An extensive set of exercises is presented at the end of each chapter. Algorithms for Computer Algebra is suitable for use as a textbook for a course on algebraic algorithms at the third-year, fourth-year, or graduate level. Although the mathematical development uses concepts from modern algebra, the book is self-contained in the sense that a one-term undergraduate course introducing students to rings and fields is the only prerequisite assumed. The book also serves well as a supplementary textbook for a traditional modern algebra course, by presenting concrete applications to motivate the understanding of the theory of rings and fields.
Written by one of the subject's foremost experts, this book focuses on the central developments and modern methods of the advanced theory of abelian groups, while remaining accessible, as an introduction and reference, to the non-specialist. It provides a coherent source for results scattered throughout the research literature with lots of new proofs. The presentation highlights major trends that have radically changed the modern character of the subject, in particular, the use of homological methods in the structure theory of various classes of abelian groups, and the use of advanced set-theoretical methods in the study of un decidability problems. The treatment of the latter trend includes Shelah's seminal work on the un decidability in ZFC of Whitehead's Problem; while the treatment of the former trend includes an extensive (but non-exhaustive) study of p-groups, torsion-free groups, mixed groups and important classes of groups arising from ring theory. To prepare the reader to tackle these topics, the book reviews the fundamentals of abelian group theory and provides some background material from category theory, set theory, topology and homological algebra. An abundance of exercises are included to test the reader's comprehension, and to explore noteworthy extensions and related sidelines of the main topics. A list of open problems and questions, in each chapter, invite the reader to take an active part in the subject's further development.
The purpose of this book is to present an up to date account of fuzzy subsemigroups and fuzzy ideals of a semigroup. The book concentrates on theoretical aspects, but also includes applications in the areas of fuzzy coding theory, fuzzy finite state machines, and fuzzy languages. Basic results on fuzzy subsets, semigroups, codes, finite state machines, and languages are reviewed and introduced, as well as certain fuzzy ideals of a semigroup and advanced characterizations and properties of fuzzy semigroups.
Interest in commutative algebra has surged over the past decades. In order to survey and highlight recent developments in this rapidly expanding field, the Centre de Recerca Matematica in Bellaterra organized a ten-days Summer School on Commutative Algebra in 1996. Lectures were presented by six high-level specialists, L. Avramov (Purdue), M.K. Green (UCLA), C. Huneke (Purdue), P. Schenzel (Halle), G. Valla (Genova) and W.V. Vasconcelos (Rutgers), providing a fresh and extensive account of the results, techniques and problems of some of the most active areas of research. The present volume is a synthesis of the lectures given by these authors. Research workers as well as graduate students in commutative algebra and nearby areas will find a useful overview of the field and recent developments in it. Reviews "All six articles are at a very high level; they provide a thorough survey of results and methods in their subject areas, illustrated with algebraic or geometric examples." - Acta Scientiarum Mathematicarum Avramov lecture: ..". it contains all the major results on infinite free resolutions], it explains carefully all the different techniques that apply, it provides complete proofs (...). This will be extremely helpful for the novice as well as the experienced." - Mathematical reviews Huneke lecture: "The topic is tight closure, a theory developed by M. Hochster and the author which has in a short time proved to be a useful and powerful tool. (...) The paper is extremely well organized, written, and motivated." - Zentralblatt MATH Schenzel lecture: ..". this paper is an excellent introduction to applications of local cohomology." - Zentralblatt MATH Valla lecture: ..". since he is an acknowledged expert on Hilbert functions and since his interest has been so broad, he has done a superb job in giving the readers a lively picture of the theory." - Mathematical reviews Vasconcelos lecture: "This is a very useful survey on invariants of modules over noetherian rings, relations between them, and how to compute them." - Zentralblatt MATH
This book is the first volume of proceedings from the joint conference X International Symposium "Quantum Theory and Symmetries" (QTS-X) and XII International Workshop "Lie Theory and Its Applications in Physics" (LT-XII), held on 19-25 June 2017 in Varna, Bulgaria. The QTS series was founded on the core principle that symmetries underlie all descriptions of quantum systems. It has since evolved into a symposium at the forefront of theoretical and mathematical physics. The LT series covers the whole field of Lie theory in its widest sense, together with its applications in many areas of physics. As an interface between mathematics and physics, the workshop serves as a meeting place for mathematicians and theoretical and mathematical physicists. In dividing the material between the two volumes, the Editor has sought to select papers that are more oriented toward mathematics for the first volume, and those focusing more on physics for the second. However, this division is relative, since many papers are equally suitable for either volume. The topics addressed in this volume represent the latest trends in the fields covered by the joint conferences: representation theory, integrability, entanglement, quantum groups, number theory, conformal geometry, quantum affine superalgebras, noncommutative geometry. Further, they present various mathematical results: on minuscule modules, symmetry breaking operators, Kashiwara crystals, meta-conformal invariance, the superintegrable Zernike system.
The aim of the Expositions is to present new and important developments in pure and applied mathematics. Well established in the community over more than two decades, the series offers a large library of mathematical works, including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers interested in a thorough study of the subject. Editorial Board Lev Birbrair, Universidade Federal do Ceara, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk Schleicher, Jacobs University, Bremen, Germany Katrin Wendland, University of Freiburg, Germany Honorary Editor Victor P. Maslov, Russian Academy of Sciences, Moscow, Russia Titles in planning include Yuri A. Bahturin, Identical Relations in Lie Algebras (2019) Yakov G. Berkovich, Lev G. Kazarin, and Emmanuel M. Zhmud', Characters of Finite Groups, Volume 2 (2019) Jorge Herbert Soares de Lira, Variational Problems for Hypersurfaces in Riemannian Manifolds (2019) Volker Mayer, Mariusz Urbanski, and Anna Zdunik, Random and Conformal Dynamical Systems (2021) Ioannis Diamantis, Bostjan Gabrovsek, Sofia Lambropoulou, and Maciej Mroczkowski, Knot Theory of Lens Spaces (2021)
This book is an introduction to the theory of noncommutative algebra. The core of the book is suitable for a one-semester course for graduate students. The approach, which is more homological than ring-theoretic, clarifies the subject and its relation to other important areas of mathematics, including K-theory, homological algebra, and representation theory. The main part of the book begins with a brief review of background material; the first chapter covers the basics of semisimple modules and rings, including the Wedderburn structure theorem; chapter two discusses the Jacobson radical, giving several different views; chapter three develops the theory of central simple algebras, including proofs of the Skolem-Noether and Double Centralizer theorems, with two famous theorems of Wedderburn and Frobenius given as applications; and chapter four is an introduction to the Brauer group and its relation to cohomology. The remaining chapters introduce several special topics: the notion of primitive ring is developed along lines parallel to that of simple rings; the representation theory of finite groups is combined with the Wedderburn Structure Theorem to prove Burnside's Theorem; the global dimension of a ring is studied using Kaplansky's elementary point of view; and the Brauer group of a commutative ring is introduced. Problems throughout the book provide concrete examples, applications and amplifications of the text; a set of supplementary problems explores further topics and can serve as starting points for student projects.
The purpose of this book is twofold. First, it is written to be a textbook for a graduate level course on Galois theory or field theory. Second, it is designed to be a reference for researchers who need to know field theory. The book is written at the level of students who have familiarity with the basic concepts of group, ring, vector space theory, including the Sylow theorems, factorization in polynomial rings, and theorems about bases of vector spaces. This book has a large number of examples and exercises, a large number of topics covered, and complete proofs given for the stated results. To help readers grasp field.
This volume presents a multi-dimensional collection of articles highlighting recent developments in commutative algebra. It also includes an extensive bibliography and lists a substantial number of open problems that point to future directions of research in the represented subfields. The contributions cover areas in commutative algebra that have flourished in the last few decades and are not yet well represented in book form. Highlighted topics and research methods include Noetherian and non- Noetherian ring theory as well as integer-valued polynomials and functions. Specific topics include: * Homological dimensions of Prufer-like rings * Quasi complete rings * Total graphs of rings * Properties of prime ideals over various rings * Bases for integer-valued polynomials * Boolean subrings * The portable property of domains * Probabilistic topics in Intn(D) * Closure operations in Zariski-Riemann spaces of valuation domains * Stability of domains * Non-Noetherian grade * Homotopy in integer-valued polynomials * Localizations of global properties of rings * Topics in integral closure * Monoids and submonoids of domains The book includes twenty articles written by many of the most prominent researchers in the field. Most contributions are authored by attendees of the conference in commutative algebra held at the Graz University of Technology in December 2012. There is also a small collection of invited articles authored by those who did not attend the conference. Following the model of the Graz conference, the volume contains a number of comprehensive survey articles along with related research articles featuring recent results that have not yet been published elsewhere.
Here, the eminent algebraist, Nathan Jacobsen, concentrates on those algebras that have an involution. Although they appear in many contexts, these algebras first arose in the study of the so-called "multiplication algebras of Riemann matrices". Of particular interest are the Jordan algebras determined by such algebras, and thus their structure is discussed in detail. Two important concepts also dealt with are the universal enveloping algebras and the reduced norm. However, the largest part of the book is the fifth chapter, which focuses on involutorial simple algebras of finite dimension over a field.
Integral Closure gives an account of theoretical and algorithmic developments on the integral closure of algebraic structures. These are shared concerns in commutative algebra, algebraic geometry, number theory and the computational aspects of these fields. The overall goal is to determine and analyze the equations of the assemblages of the set of solutions that arise under various processes and algorithms. It gives a comprehensive treatment of Rees algebras and multiplicity theory - while pointing to applications in many other problem areas. Its main goal is to provide complexity estimates by tracking numerically invariants of the structures that may occur. This book is intended for graduate students and researchers in the fields mentioned above. It contains, besides exercises aimed at giving insights, numerous research problems motivated by the developments reported.
This new Reader aims to guide students through some of the key readings on the subject of terrorism and political violence. In an age when there is more written about terrorism than anyone can possibly read in a lifetime, it has become increasingly difficult for students and scholars to navigate the literature. At the same time, courses and modules on terrorism studies are developing at a rapid rate. To meet this challenge, this wide-ranging Reader seeks to equip the aspiring student, based anywhere in the world, with a comprehensive introduction to the study of terrorism. Containing many of the most influential and groundbreaking studies from the world's leading experts, drawn from several academic disciplines, this volume is the essential companion for any student of terrorism and political violence. The Reader, which starts with a detailed Introduction by the editors, is divided into seven sections, each of which contains a short introduction as well as a guide to further reading and student discussion questions: Terrorism in Historical Context Definitions Understanding and Explaining Terrorism Terrorist Movements Terrorist Behaviour Counterterrorism Current and Future Trends in Terrorism. This Reader will be essential reading for students of Terrorism and Political Violence, and highly recommended for students of Security Studies, War and Conflict Studies and Political Science in general, as well as for practitioners in the field of counter-terrorism and homeland security. Contributors: David C. Rapoport, Isabelle Duyvesteyn, Jack Gibbs, Leonard Weinberg, Ami Pedahzur, Sivan Hirsch-Hoefler, Alex Schmid, Martha Crenshaw, Max Taylor, John Horgan, Magnus Ranstorp, C.J.M. Drake, Ehud Sprinzak, Jennifer S. Holmes, Sheila Amin Gutierrez de Pineres, Kevin M. Curtin, Xavier Raufer, Donatella della Porta, Robert Pape, Mia Bloom, Chris Dishman, Andrew Silke, Muhammad Hanif bin Hassan, Gary Ackerman, Bruce Hoffman, John Mueller, Mohammed Hafez, Karla J. Cunningham, Jonathan Tonge, Lorenzo Vidino and Michael Barkun.
Proceedings of the Vth Nordic Summer School in Mathematics in Oslo, August 5-25, 1970 |
![]() ![]() You may like...
Specifying and Securing a Social Minimum…
Toomas Kotkas, Ingrid Leijten, …
Hardcover
R3,393
Discovery Miles 33 930
International Brigade Against Apartheid…
Ronnie Kasrils, Muff Andersson, …
Paperback
Thermal Separation Technology…
Alfons Mersmann, Matthias Kind, …
Hardcover
R4,495
Discovery Miles 44 950
Molecular Physical Chemistry for…
Florin Emilian Danes, Silvia Danes, …
Hardcover
R2,693
Discovery Miles 26 930
Intelligent Motorized Spindle Technology
Yuhou Wu, Lixiu Zhang
Hardcover
R2,911
Discovery Miles 29 110
|