![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra
This book is concerned with cardinal number valued functions defined for any Boolean algebra. Examples of such functions are independence, which assigns to each Boolean algebra the supremum of the cardinalities of its free subalgebras, and cellularity, which gives the supremum of cardinalities of sets of pairwise disjoint elements. Twenty-one such functions are studied in detail, and many more in passing. The questions considered are the behaviour of these functions under algebraic operations such as products, free products, ultraproducts, and their relationships to one another. Assuming familiarity with only the basics of Boolean algebras and set theory, through simple infinite combinatorics and forcing, the book reviews current knowledge about these functions, giving complete proofs for most facts. A special feature of the book is the attention given to open problems, of which 185 are formulated. Based on Cardinal Functions on Boolean Algebras (1990) and Cardinal Invariants on Boolean Algebras (1996) by the same author, the present work is much larger than either of these. It contains solutions to many of the open problems of the earlier volumes. Among the new topics are continuum cardinals on Boolean algebras, with a lengthy treatment of the reaping number. Diagrams at the end of the book summarize the relationships between the functions for many important classes of Boolean algebras, including interval algebras, tree algebras and superatomic algebras.
This book gives an overview of research on graphs associated with commutative rings. The study of the connections between algebraic structures and certain graphs, especially finite groups and their Cayley graphs, is a classical subject which has attracted a lot of interest. More recently, attention has focused on graphs constructed from commutative rings, a field of study which has generated an extensive amount of research over the last three decades. The aim of this text is to consolidate this large body of work into a single volume, with the intention of encouraging interdisciplinary research between algebraists and graph theorists, using the tools of one subject to solve the problems of the other. The topics covered include the graphical and topological properties of zero-divisor graphs, total graphs and their transformations, and other graphs associated with rings. The book will be of interest to researchers in commutative algebra and graph theory and anyone interested in learning about the connections between these two subjects.
This book offers a panorama of recent advances in the theory of infinite groups. It contains survey papers contributed by leading specialists in group theory and other areas of mathematics. Topics include amenable groups, Kaehler groups, automorphism groups of rooted trees, rigidity, C*-algebras, random walks on groups, pro-p groups, Burnside groups, parafree groups, and Fuchsian groups. The accent is put on strong connections between group theory and other areas of mathematics.
Shows readers how empathy facilitates better communication. Author has years of teaching and consulting experience that has refined his approach to the subject.
This book describes the latest Russian research covering the structure and algorithmic properties of Boolean algebras from the algebraic and model-theoretic points of view. A significantly revised version of the author's Countable Boolean Algebras (Nauka, Novosibirsk, 1989), the text presents new results as well as a selection of open questions on Boolean algebras. Other current features include discussions of the Kottonen algebras in enrichments by ideals and automorphisms, and the properties of the automorphism groups.
The book presents integral formulations for partial differential equations, with the focus on spherical and plane integral operators. The integral relations are obtained for different elliptic and parabolic equations, and both direct and inverse mean value relations are studied. The derived integral equations are used to construct new numerical methods for solving relevant boundary value problems, both deterministic and stochastic based on probabilistic interpretation of the spherical and plane integral operators.
This book presents the general theory of categorical closure operators together with examples and applications to the most common categories, such as topological spaces, fuzzy topological spaces, groups, and abelian groups. The main aim of the theory is to develop a categorical characterization of the classical basic concepts in topology via the newly introduced concept of categorical closure operators. This permits many topological ideas to be introduced in a topology-free environment and imported afterwards into a new category, which often yields interesting new insights into its structure. The first part of the book deals with the general theory, starting with basic definitions and gradually moving to more advanced properties. The second part includes applications to the classical concepts of epimorphisms, separation, compactness and connectedness. Every chapter ends with exercises. A comprehensive list of references for the reader who wants to consult original works and a good index complete the book. "Categorical Closure Operators" is self-contained and can be considered as a graduate level text for topics courses in category theory, algebra, and topology. The book appeals mainly to graduate students and researchers in category theory and categorical topology, and to those interested in categorical methods applied to the most common concrete categories. The reader is expected to have some basic knowledge of algebra, topology and category theory; however, all recurrent categorical concepts are included in a preliminary chapter.
This is a volume of research articles related to finite groups. Topics covered include the classification of finite simple groups, the theory of p-groups, cohomology of groups, representation theory and the theory of buildings and geometries. As well as more than twenty original papers on the latest developments, which will be of great interest to specialists, the volume contains several expository articles, from which students and non-experts can learn about the present state of knowledge and promising directions for further research. The Finite Groups 2003 conference was held in honor of John Thompson. The profound influence of his fundamental contributions is clearly visible in this collection of papers dedicated to him.
Kummer's work on cyclotomic fields paved the way for the development of algebraic number theory in general by Dedekind, Weber, Hensel, Hilbert, Takagi, Artin and others. However, the success of this general theory has tended to obscure special facts proved by Kummer about cyclotomic fields which lie deeper than the general theory. For a long period in the 20th century this aspect of Kummer's work seems to have been largely forgotten, except for a few papers, among which are those by Pollaczek [Po], Artin-Hasse [A-H] and Vandiver [Va]. In the mid 1950's, the theory of cyclotomic fields was taken up again by Iwasawa and Leopoldt. Iwasawa viewed cyclotomic fields as being analogues for number fields of the constant field extensions of algebraic geometry, and wrote a great sequence of papers investigating towers of cyclotomic fields, and more generally, Galois extensions of number fields whose Galois group is isomorphic to the additive group of p-adic integers. Leopoldt concentrated on a fixed cyclotomic field, and established various p-adic analogues of the classical complex analytic class number formulas. In particular, this led him to introduce, with Kubota, p-adic analogues of the complex L-functions attached to cyclotomic extensions of the rationals. Finally, in the late 1960's, Iwasawa [Iw 11] made the fundamental discovery that there was a close connection between his work on towers of cyclotomic fields and these p-adic L-functions of Leopoldt - Kubota.
This volume is devoted to the development of an algebraic model of databases. The first chapter presents a general introduction. The following sixteen chapters are divided into three main parts. Part I deals with various aspects of universal algebra. The chapters of Part I discuss topics such as sets, algebras and models, fundamental structures, categories, the category of sets, topoi, fuzzy sets, varieties of algebras, axiomatic classes, category algebra and algebraic theories. Part II deals with different approaches to the algebraization of predicate calculus. This material is intended to be applied chiefly to databases, although some discussion of pure algebraic applications is also given. Discussed here are topics such as Boolean algebras and propositional calculus, Halmos algebras and predicate calculus, connections with model theory, and the categorial approach to algebraic logic. Part III is concerned specifically with the algebraic model of databases, which considers the database as an algebraic structure. Topics dealt with in this part are the algebraic aspects of databases, their equivalence and restructuring, symmetries and the Galois theory of databases, and constructions in database theory. The volume closes with a discussion and conclusions, and an extensive bibliography. For mathematicians, computer scientists and database engineers, with an interest in applications of algebra and logic.
This is the first monograph on rings closed to von Neumann regular rings. The following classes of rings are considered: exchange rings, pi-regular rings, weakly regular rings, rings with comparability, V-rings, and max rings. Every Artinian or von Neumann regular ring A is an exchange ring (this means that for every one of its elements a, there exists an idempotent e of A such that aA contains eA and (1-a)A contains (1-e)A). Exchange rings are very useful in the study of direct decompositions of modules, and have many applications to theory of Banach algebras, ring theory, and K-theory. In particular, exchange rings and rings with comparability provide a key to a number of outstanding cancellation problems for finitely generated projective modules. Every von Neumann regular ring is a weakly regular pi-regular ring (a ring A is pi-regular if for every one of its elements a, there is a positive integer n such that a is contained in aAa) and every Artinian ring is a pi-regular max ring (a ring is a max ring if every one of its nonzero modules has a maximal submodule). Thus many results on finite-dimensional algebras and regular rings are extended to essentially larger classes of rings. Starting from a basic understanding of ring theory, the theory of rings close to regular is presented and accompanied with complete proofs. The book will appeal to readers from beginners to researchers and specialists in algebra; it concludes with an extensive bibliography.
This book contains nineteen papers from among the twenty-five papers presented at the Second International Conference on Fibonacci Numbers and Their Applications. These papers have been selected after a careful review by well known referee's in the field, and they range from elementary number theory to probability and statistics. The Fibonacci numbers are their unifying bond. It is anticipated that this book will be useful to research workers and graduate students interested in the Fibonacci numbers and their applications. October 1987 The Editors Gerald E. Bergum South Dakota State University Brookings, South Dakota, U.S.A. Andreas N. Philippou University of Patras Patras, Greece Alwyn F. Horadam University of New England Armidale, N.S.W., Australia xiii THE ORGANIZING COMMITTEES LOCAL COMMITTEE INTERN A TIONAL COMMITTEE Bergum, G., Chairman Philippou, A. (Greece), Chairman Edgar, H., Co-chalrman Horadam, A. (Australia), Co-chalrman Bergum, G. (U.s.A.) Thoro, D. Kiss, P. (Hungary) Johnson, M. Long, C. (U.S.A.) Lange, L.
Brauer had already introduced the defect of a block and opened
the way towards a classification by solving all the problems in
defects zero and one, and by providing some evidence for the
finiteness of the set of blocks with a given defect. In 1959 he
discovered the defect group, and in 1964 Dade determined the blocks
with cyclic defect groups.
Brings needed focus diversity and inclusion to the discipline of family communication. Suitable for advanced courses in family communication and family studies.
Significant progress has been made during the last 15 years in the solution of nonlinear systems, particularly in computing fixed points, solving systems of nonlinear equations and applications to equilibrium models. This volume presents a self-contained account of recent work on simplicial and continuation methods applied to the solution of algebraic equations. The contents are divided into eight chapters. Chapters 1 and 2 deal with Kuhn's algorithm. Chapter 3 considers Newton's method, and a comparison between Kuhn's algorithm and Newton's method is presented in Chapter 4. The following four chapters discuss respectively, incremental algorithms and their cost theory, homotopy algorithms, zeros of polynomial mapping, and piecewise linear algorithms. This text is designed for use by researchers and graduates interested in algebraic equations and computational complexity theory.
This book presents advances in matrix and tensor data processing in
the domain of signal, image and information processing. The
theoretical mathematical approaches are discusses in the context of
potential applications in sensor and cognitive systems engineering.
The book offers an original view on channel coding, based on a unitary approach to block and convolutional codes for error correction. It presents both new concepts and new families of codes. For example, lengthened and modified lengthened cyclic codes are introduced as a bridge towards time-invariant convolutional codes and their extension to time-varying versions. The novel families of codes include turbo codes and low-density parity check (LDPC) codes, the features of which are justified from the structural properties of the component codes. Design procedures for regular LDPC codes are proposed, supported by the presented theory. Quasi-cyclic LDPC codes, in block or convolutional form, represent one of the most original contributions of the book. The use of more than 100 examples allows the reader gradually to gain an understanding of the theory, and the provision of a list of more than 150 definitions, indexed at the end of the book, permits rapid location of sought information.
From the reviews of the first edition: "It is certainly no exaggeration to say that A Singular Introduction to Commutative Algebra aims to lead a further stage in the computational revolution in commutative algebra . Among the great strengths and most distinctive features is a new, completely unified treatment of the global and local theories. making it one of the most flexible and most efficient systems of its type....another strength of Greuel and Pfister's book is its breadth of coverage of theoretical topics in the portions of commutative algebra closest to algebraic geometry, with algorithmic treatments of almost every topic....Greuel and Pfister have written a distinctive and highly useful book that should be in the library of every commutative algebraist and algebraic geometer, expert and novice alike." J.B. Little, MAA, March 2004 The second edition is substantially enlarged by a chapter on Groebner bases in non-commtative rings, a chapter on characteristic and triangular sets with applications to primary decomposition and polynomial solving and an appendix on polynomial factorization including factorization over algebraic field extensions and absolute factorization, in the uni- and multivariate case."
The theories of V. V. Wagner (1908-1981) on abstractions of systems of binary relations are presented here within their historical and mathematical contexts. This book contains the first translation from Russian into English of a selection of Wagner's papers, the ideas of which are connected to present-day mathematical research. Along with a translation of Wagner's main work in this area, his 1953 paper 'Theory of generalised heaps and generalised groups,' the book also includes translations of three short precursor articles that provide additional context for his major work. Researchers and students interested in both algebra (in particular, heaps, semiheaps, generalised heaps, semigroups, and groups) and differential geometry will benefit from the techniques offered by these translations, owing to the natural connections between generalised heaps and generalised groups, and the role played by these concepts in differential geometry. This book gives examples from present-day mathematics where ideas related to Wagner's have found fruitful applications.
The purpose of this book is twofold: to present some basic ideas in commutative algebra and algebraic geometry and to introduce topics of current research, centered around the themes of Groebner bases, resultants and syzygies. The presentation of the material combines definitions and proofs with an emphasis on concrete examples. The authors illustrate the use of software such as Mathematica and Singular. The design of the text in each chapter consists of two parts: the fundamentals and the applications, which make it suitable for courses of various lengths, levels, and topics based on the mathematical background of the students. The fundamentals portion of the chapter is intended to be read with minimal outside assistance, and to learn some of the most useful tools in commutative algebra. The applications of the chapter are to provide a glimpse of the advanced mathematical research where the topics and results are related to the material presented earlier. In the applications portion, the authors present a number of results from a wide range of sources without detailed proofs. The applications portion of the chapter is suitable for a reader who knows a little commutative algebra and algebraic geometry already, and serves as a guide to some interesting research topics. This book should be thought of as an introduction to more advanced texts and research topics. Its novelty is that the material presented is a unique combination of the essential methods and the current research results. The goal is to equip readers with the fundamental classical algebra and geometry tools, ignite their research interests, and initiate some potential research projects in the related areas.
The notion of right-ordered groups is fundamental in theories of I-groups, ordered groups, torsion-free groups, and the theory of zero-divisors free rings, as well as in theoretical physics. Right-Ordered Groups is the first book to provide a systematic presentation of right-ordered group theory, describing all known and new results in the field. The volume addresses topics such as right-ordered groups and order permutation groups, the system of convex subgroups of a right-ordered group, and free products of right-ordered groups.
The book deals with dynamical systems, generated by linear mappings of finite dimensional spaces and their applications. These systems have a relatively simple structure from the point of view of the modern dynamical systems theory. However, for the dynamical systems of this sort, it is possible to obtain explicit answers to specific questions being useful in applications. The considered problems are natural and look rather simple, but in reality in the course of investigation, they confront users withplenty of subtle questions and their detailed analysis needs a substantial effort. The problems arising are related to linear algebra and dynamical systems theory, and therefore, the book can be considered as a natural amplification, refinement and supplement to linear algebra and dynamical systems theory textbooks."
This second volume of this text covers the classical aspects of the theory of groups and their representations. It also offers a general introduction to the modern theory of representations including the representations of quivers and finite partially ordered sets and their applications to finite dimensional algebras. It reviews key recent developments in the theory of special ring classes including Frobenius, quasi-Frobenius, and others.
ThesubjectofthisbookisSemi-In?niteAlgebra,ormorespeci?cally,Semi-In?nite Homological Algebra. The term "semi-in?nite" is loosely associated with objects that can be viewed as extending in both a "positive" and a "negative" direction, withsomenaturalpositioninbetween,perhapsde?nedupto a"?nite"movement. Geometrically, this would mean an in?nite-dimensional variety with a natural class of "semi-in?nite" cycles or subvarieties, having always a ?nite codimension in each other, but in?nite dimension and codimension in the whole variety [37]. (For further instances of semi-in?nite mathematics see, e. g. , [38] and [57], and references below. ) Examples of algebraic objects of the semi-in?nite type range from certain in?nite-dimensional Lie algebras to locally compact totally disconnected topolo- cal groups to ind-schemes of ind-in?nite type to discrete valuation ?elds. From an abstract point of view, these are ind-pro-objects in various categories, often - dowed with additional structures. One contribution we make in this monograph is the demonstration of another class of algebraic objects that should be thought of as "semi-in?nite", even though they do not at ?rst glance look quite similar to the ones in the above list. These are semialgebras over coalgebras, or more generally over corings - the associative algebraic structures of semi-in?nite nature. The subject lies on the border of Homological Algebra with Representation Theory, and the introduction of semialgebras into it provides an additional link with the theory of corings [23], as the semialgebrasare the natural objects dual to corings.
Bifurcation theory studies how the structure of solutions to equations changes as parameters are varied. The nature of these changes depends both on the number of parameters and on the symmetries of the equations. Volume I discusses how singularity-theoretic techniques aid the understanding of transitions in multiparameter systems. This volume focuses on bifurcation problems with symmetry and shows how group-theoretic techniques aid the understanding of transitions in symmetric systems. Four broad topics are covered: group theory and steady-state bifurcation, equicariant singularity theory, Hopf bifurcation with symmetry, and mode interactions. The opening chapter provides an introduction to these subjects and motivates the study of systems with symmetry. Detailed case studies illustrate how group-theoretic methods can be used to analyze specific problems arising in applications. |
![]() ![]() You may like...
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R3,107
Discovery Miles 31 070
Krylov Subspace Methods - Principles and…
Joerg Liesen, Zdenek Strakos
Hardcover
R3,840
Discovery Miles 38 400
Cyclic Modules and the Structure of…
S.K. Jain, Ashish K. Srivastava, …
Hardcover
R5,828
Discovery Miles 58 280
Student Solutions Manual for…
Roxy Peck, Chris Olsen, …
Paperback
|