![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra
This proceedings volume covers a range of research topics in algebra from the Southern Regional Algebra Conference (SRAC) that took place in March 2017. Presenting theory as well as computational methods, featured survey articles and research papers focus on ongoing research in algebraic geometry, ring theory, group theory, and associative algebras. Topics include algebraic groups, combinatorial commutative algebra, computational methods for representations of groups and algebras, group theory, Hopf-Galois theory, hypergroups, Lie superalgebras, matrix analysis, spherical and algebraic spaces, and tropical algebraic geometry. Since 1988, SRAC has been an important event for the algebra research community in the Gulf Coast Region and surrounding states, building a strong network of algebraists that fosters collaboration in research and education. This volume is suitable for graduate students and researchers interested in recent findings in computational and theoretical methods in algebra and representation theory.
Quantum Structures and the Nature of Reality is a collection of papers written for an interdisciplinary audience about the quantum structure research within the International Quantum Structures Association. The advent of quantum mechanics has changed our scientific worldview in a fundamental way. Many popular and semi-popular books have been published about the paradoxical aspects of quantum mechanics. Usually, however, these reflections find their origin in the standard views on quantum mechanics, most of all the wave-particle duality picture. Contrary to relativity theory, where the meaning of its revolutionary ideas was linked from the start with deep structural changes in the geometrical nature of our world, the deep structural changes about the nature of our reality that are indicated by quantum mechanics cannot be traced within the standard formulation. The study of the structure of quantum theory, its logical content, its axiomatic foundation, has been motivated primarily by the search for their structural changes. Due to the high mathematical sophistication of this quantum structure research, no books have been published which try to explain the recent results for an interdisciplinary audience. This book tries to fill this gap by collecting contributions from some of the main researchers in the field. They reveal the steps that have been taken towards a deeper structural understanding of quantum theory.
From reviews of the first edition: "The important feature of the present book is that it starts from the beginning (with only a very modest knowledge assumed) and covers all important topics... The book is very carefully organized [and] ends with 20 pages of useful historic comments. Such a comprehensive and carefully written treatment of fundamentals of the theory will certainly be a basic reference and text book in the future." -- Newsletter of the EMS "This is a fundamental book and none, beginner or expert, could afford to ignore it. Some results are really difficult to be found in other monographs, while others are for the first time included in a book." -- Mathematica "Each chapter begins with an excellent summary of the content and ends with an exercise section... This is really an outstanding book, well written and beautifully produced. It is both a graduate text and a monograph, so it can be recommended to graduate students as well as to specialists." -- Publicationes Mathematicae Lie Groups Beyond an Introduction takes the reader from the end of introductory Lie group theory to the threshold of infinite-dimensional group representations. Merging algebra and analysis throughout, the author uses Lie-theoretic methods to develop a beautiful theory having wide applications in mathematics and physics. A feature of the presentation is that it encourages the reader's comprehension of Lie group theory to evolve from beginner to expert: initial insights make use of actual matrices, while later insights come from such structural features as properties of root systems, or relationships among subgroups, or patterns among different subgroups. Topics include a description of all simplyconnected Lie groups in terms of semisimple Lie groups and semidirect products, the Cartan theory of complex semisimple Lie algebras, the Cartan-Weyl theory of the structure and representations of compact Lie groups and representations of complex semisimple Lie algebras, the classification of real semisimple Lie algebras, the structure theory of noncompact reductive Lie groups as it is now used in research, and integration on reductive groups. Many problems, tables, and bibliographical notes complete this comprehensive work, making the text suitable either for self-study or for courses in the second year of graduate study and beyond.
Relation algebras are algebras arising from the study of binary
relations.
This book, the first printing of which was published as volume 38 of the Encyclopaedia of Mathematical Sciences, presents a modern approach to homological algebra, based on the systematic use of the terminology and ideas of derived categories and derived functors. The book contains applications of homological algebra to the theory of sheaves on topological spaces, to Hodge theory, and to the theory of modules over rings of algebraic differential operators (algebraic D-modules). The authors Gelfand and Manin explain all the main ideas of the theory of derived categories. Both authors are well-known researchers and the second, Manin, is famous for his work in algebraic geometry and mathematical physics. The book is an excellent reference for graduate students and researchers in mathematics and also for physicists who use methods from algebraic geometry and algebraic topology.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point"of a Pin'. van GuIik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; ihe Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras .are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics."
This second edition is fully updated, covering in particular new types of coherent states (the so-called Gazeau-Klauder coherent states, nonlinear coherent states, squeezed states, as used now routinely in quantum optics) and various generalizations of wavelets (wavelets on manifolds, curvelets, shearlets, etc.). In addition, it contains a new chapter on coherent state quantization and the related probabilistic aspects. As a survey of the theory of coherent states, wavelets, and some of their generalizations, it emphasizes mathematical principles, subsuming the theories of both wavelets and coherent states into a single analytic structure. The approach allows the user to take a classical-like view of quantum states in physics. Starting from the standard theory of coherent states over Lie groups, the authors generalize the formalism by associating coherent states to group representations that are square integrable over a homogeneous space; a further step allows one to dispense with the group context altogether. In this context, wavelets can be generated from coherent states of the affine group of the real line, and higher-dimensional wavelets arise from coherent states of other groups. The unified background makes transparent an entire range of properties of wavelets and coherent states. Many concrete examples, such as coherent states from semisimple Lie groups, Gazeau-Klauder coherent states, coherent states forthe relativity groups, and several kinds of wavelets, are discussed in detail. The book concludes with a palette of potentialapplications, from the quantum physically oriented, likethe quantum-classical transition or the construction of adequate states in quantum information, to the most innovative techniques to be used in data processing. Intended as an introduction to current research for graduate students and others entering the field, the mathematical discussion is self-contained. With its extensive references to the research literature, the first edition of the book is already a proven compendium for physicists and mathematicians active in the field, and with full coverage of the latest theory and results the revised second edition is even more valuable."
An accessible text introducing algebraic geometries and algebraic
groups at advanced undergraduate and early graduate level, this
book develops the language of algebraic geometry from scratch and
uses it to set up the theory of affine algebraic groups from first
principles.
The contributions in this book focus on a variety of topics related to discrepancy theory, comprising Fourier techniques to analyze discrepancy, low discrepancy point sets for quasi-Monte Carlo integration, probabilistic discrepancy bounds, dispersion of point sets, pair correlation of sequences, integer points in convex bodies, discrepancy with respect to geometric shapes other than rectangular boxes, and also open problems in discrepany theory.
(NOTES)This text focuses on the topics which are an essential part of the engineering mathematics course:ordinary differential equations, vector calculus, linear algebra and partial differential equations. Advantages over competing texts: 1. The text has a large number of examples and problems - a typical section having 25 quality problems directly related to the text. 2. The authors use a practical engineering approach based upon solving equations. All ideas and definitions are introduced from this basic viewpoint, which allows engineers in their second year to understand concepts that would otherwise be impossibly abstract. Partial differential equations are introduced in an engineering and science context based upon modelling of physical problems. A strength of the manuscript is the vast number of applications to real-world problems, each treated completely and in sufficient depth to be self-contained. 3. Numerical analysis is introduced in the manuscript at a completely elementary calculus level. In fact, numerics are advertised as just an extension of the calculus and used generally as enrichment, to help communicate the role of mathematics in engineering applications. 4.The authors have used and updated the book as a course text over a 10 year period. 5. Modern outline, as contrasted to the outdated outline by Kreysig and Wylie. 6. This is now a one year course. The text is shorter and more readable than the current reference type manuals published all at around 1300-1500 pages.
Group theory is one of the most fundamental branches of mathematics. This volume of the Encyclopaedia is devoted to two important subjects within group theory. The first part of the book is concerned with infinite groups. The authors deal with combinatorial group theory, free constructions through group actions on trees, algorithmic problems, periodic groups and the Burnside problem, and the structure theory for Abelian, soluble and nilpotent groups. They have included the very latest developments; however, the material is accessible to readers familiar with the basic concepts of algebra. The second part treats the theory of linear groups. It is a genuinely encyclopaedic survey written for non-specialists. The topics covered includethe classical groups, algebraic groups, topological methods, conjugacy theorems, and finite linear groups. This book will be very useful to allmathematicians, physicists and other scientists including graduate students who use group theory in their work.
This volume is both a tribute to Ulrich Felgner's research in algebra, logic, and set theory and a strong research contribution to these areas. Felgner's former students, friends and collaborators have contributed sixteen papers to this volume that highlight the unity of these three fields in the spirit of Ulrich Felgner's own research. The interested reader will find excellent original research surveys and papers that span the field from set theory without the axiom of choice via model-theoretic algebra to the mathematics of intonation.
This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and Laplace and Seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association schemes, p-ranks of configurations and similar topics. Exercises at the end of each chapter provide practice and vary from easy yet interesting applications of the treated theory, to little excursions into related topics. Tables, references at the end of the book, an author and subject index enrich the text. "Spectra of Graphs" is written for researchers, teachers and graduate students interested in graph spectra. The reader is assumed to be familiar with basic linear algebra and eigenvalues, although some more advanced topics in linear algebra, like the Perron-Frobenius theorem and eigenvalue interlacing are included."
A collection of surveys and research papers on mathematical software and algorithms. The common thread is that the field of mathematical applications lies on the border between algebra and geometry. Topics include polyhedral geometry, elimination theory, algebraic surfaces, Gröbner bases, triangulations of point sets and the mutual relationship. This diversity is accompanied by the abundance of available software systems which often handle only special mathematical aspects. This is why the volume also focuses on solutions to the integration of mathematical software systems. This includes low-level and XML based high-level communication channels as well as general frameworks for modular systems.
This volume contains the proceedings of the NATO Advanced Study Institute on Finite and Locally Finite Groups held in Istanbul, Turkey, 14-27 August 1994, at which there were about 90 participants from some 16 different countries. The ASI received generous financial support from the Scientific Affairs Division of NATO. INTRODUCTION A locally finite group is a group in which every finite set of elements is contained in a finite subgroup. The study of locally finite groups began with Schur's result that a periodic linear group is, in fact, locally finite. The simple locally finite groups are of particular interest. In view of the classification of the finite simple groups and advances in representation theory, it is natural to pursue classification theorems for simple locally finite groups. This was one of the central themes of the Istanbul conference and significant progress is reported herein. The theory of simple locally finite groups intersects many areas of group theory and representation theory, so this served as a focus for several articles in the volume. Every simple locally finite group has what is known as a Kegel cover. This is a collection of pairs {(G , Ni) liE I}, where I is an index set, each group Gi is finite, i Ni
This book is mainly devoted to some computational and algorithmic problems in finite fields such as, for example, polynomial factorization, finding irreducible and primitive polynomials, the distribution of these primitive polynomials and of primitive points on elliptic curves, constructing bases of various types and new applications of finite fields to other areas of mathematics. For completeness we in clude two special chapters on some recent advances and applications of the theory of congruences (optimal coefficients, congruential pseudo-random number gener ators, modular arithmetic, etc.) and computational number theory (primality testing, factoring integers, computation in algebraic number theory, etc.). The problems considered here have many applications in Computer Science, Cod ing Theory, Cryptography, Numerical Methods, and so on. There are a few books devoted to more general questions, but the results contained in this book have not till now been collected under one cover. In the present work the author has attempted to point out new links among different areas of the theory of finite fields. It contains many very important results which previously could be found only in widely scattered and hardly available conference proceedings and journals. In particular, we extensively review results which originally appeared only in Russian, and are not well known to mathematicians outside the former USSR."
The theory of quasivarieties constitutes an independent direction in algebra and mathematical logic and specializes in a fragment of first-order logic-the so-called universal Horn logic. This treatise uniformly presents the principal directions of the theory from an effective algebraic approach developed by the author himself. A revolutionary exposition, this influential text contains a number of results never before published in book form, featuring in-depth commentary for applications of quasivarieties to graphs, convex geometries, and formal languages. Key features include coverage of the Birkhoff-Mal'tsev problem on the structure of lattices of quasivarieties, helpful exercises, and an extensive list of references.
Terrorism is one of the serious threats to international peace and security that we face in this decade. No nation can consider itself immune from the dangers it poses, and no society can remain disengaged from the efforts to combat it. The termcounterterrorism refers to the techniques, strategies, and tactics used in the ?ght against terrorism. Counterterrorism efforts involve many segments of so- ety, especially governmental agencies including the police, military, and intelligence agencies (both domestic and international). The goal of counterterrorism efforts is to not only detect and prevent potential future acts but also to assist in the response to events that have already occurred. A terrorist cell usually forms very quietly and then grows in a pattern - sp- ning international borders, oceans, and hemispheres. Surprising to many, an eff- tive "weapon," just as quiet - mathematics - can serve as a powerful tool to combat terrorism, providing the ability to connect the dots and reveal the organizational pattern of something so sinister. The events of 9/11 instantly changed perceptions of the wordsterrorist andn- work, especially in the United States. The international community was confronted with the need to tackle a threat which was not con?ned to a discreet physical - cation. This is a particular challenge to the standard instruments for projecting the legal authority of states and their power to uphold public safety. As demonstrated by the events of the 9/11 attack, we know that terrorist attacks can happen anywhere.
This volume develops the depth and breadth of the mathematics underlying the construction and analysis of Hadamard matrices, and their use in the construction of combinatorial designs. At the same time, it pursues current research in their numerous applications in security and cryptography, quantum information, and communications. Bridges among diverse mathematical threads and extensive applications make this an invaluable source for understanding both the current state of the art and future directions. The existence of Hadamard matrices remains one of the most challenging open questions in combinatorics. Substantial progress on their existence has resulted from advances in algebraic design theory using deep connections with linear algebra, abstract algebra, finite geometry, number theory, and combinatorics. Hadamard matrices arise in a very diverse set of applications. Starting with applications in experimental design theory and the theory of error-correcting codes, they have found unexpected and important applications in cryptography, quantum information theory, communications, and networking.
In this book the authors describe the important generalization of the original Weil conjectures, as given by P. Deligne in his fundamental paper "La conjecture de Weil II". The authors follow the important and beautiful methods of Laumon and Brylinski which lead to a simplification of Deligne's theory. Deligne's work is closely related to the sheaf theoretic theory of perverse sheaves. In this framework Deligne's results on global weights and his notion of purity of complexes obtain a satisfactory and final form. Therefore the authors include the complete theory of middle perverse sheaves. In this part, the l-adic Fourier transform is introduced as a technique providing natural and simple proofs. To round things off, there are three chapters with significant applications of these theories.
The finite-difference solution of mathematical-physics differential equations is carried out in two stages: 1) the writing of the difference scheme (a differ ence approximation to the differential equation on a grid), 2) the computer solution of the difference equations, which are written in the form of a high order system of linear algebraic equations of special form (ill-conditioned, band-structured). Application of general linear algebra methods is not always appropriate for such systems because of the need to store a large volume of information, as well as because of the large amount of work required by these methods. For the solution of difference equations, special methods have been developed which, in one way or another, take into account special features of the problem, and which allow the solution to be found using less work than via the general methods. This work is an extension of the book Difference M ethod3 for the Solution of Elliptic Equation3 by A. A. Samarskii and V. B. Andreev which considered a whole set of questions connected with difference approximations, the con struction of difference operators, and estimation of the onvergence rate of difference schemes for typical elliptic boundary-value problems. Here we consider only solution methods for difference equations. The book in fact consists of two volumes."
Ever since its introduction around 1960 by Kirillov, the orbit method has played a major role in representation theory of Lie groups and Lie algebras. This book contains the proceedings of a conference held from August 29 to September 2, 1988, at the University of Copenhagen, about "the orbit method in representation theory." It contains ten articles, most of which are original research papers, by well-known mathematicians in the field, and it reflects the fact that the orbit method plays an important role in the representation theory of semisimple Lie groups, solvable Lie groups, and even more general Lie groups, and also in the theory of enveloping algebras.
Diese Arbeit enthiilt zwei grof3ere Fallstudien zur Beziehung zwischen theo- retischer Mathematik und Anwendungen im 19. Jahrhundert. Sie ist das Ergebnis eines mathematikhistorischen Forschungsprojekts am Mathemati- schen Fachbereich der Universitiit-Gesamthochschule Wuppertal und wurde dort als Habilitationsschrift vorgelegt. Ohne das wohlwollende Interesse von Herrn H. Scheid und den Kollegen der Abteilung fUr Didaktik der Mathema- tik ware das nicht moglich gewesen: Inhaltlich verdankt sie - direkt oder indirekt - vielen Beteiligten et- was. So wurde mein Interesse an den kristallographischen Symmetriekon- zepten, dem Thema der ersten Fallstudie, durch Anregungen und Hinweise von Herrn E. Brieskorn geweckt. Sowohl von seiner Seite als auch von Herrn J. J. Burckhardt stammen uberdies viele wert volle Hinweise zum Manuskript von Kapitel I. Herrn C. J. Scriba mochte ich fur seine die gesamte Arbeit betreffenden priizisen Anmerkungen danken und Herrn W. Borho ebenso fUr seine ubergreifenden Kommentare und Vorschlage. Beziiglich der in Kapitel II behandelten projektiven Methoden in der Baustatik des 19. Jahrhunderts gilt mein besonderer Dank den Herren K. -E. Kurrer und T. Hiinseroth fUr ihre zum Teil sehr detaillierten Anmerkungen aus dem Blickwinkel der Geschichte der Bauwissenschaften. Schliefilich geht mein Dank an alle nicht namentlich Erwiihnten, die in Gesprachen, technisch oder auch anderweitig zur Fertig- stellung dieser Arbeit beigetragen haben. Fur die vorliegende Publikation habe ich einen Anhang mit einer Skizze von in unserem Zusammenhang besonders wichtig erscheinenden Aspekten der Theorie der kristallographischen Raumgruppen hinzugefUgt. Ich hoffe, daB er zum Verstiindnis des mathematischen Hintergrunds der historischen Arbeiten des ersten Kapitels beitragt.
The relevance of commutator methods in spectral and scattering theory has been known for a long time, and numerous interesting results have been ob tained by such methods. The reader may find a description and references in the books by Putnam [Pu], Reed-Simon [RS] and Baumgartel-Wollenberg [BW] for example. A new point of view emerged around 1979 with the work of E. Mourre in which the method of locally conjugate operators was introduced. His idea proved to be remarkably fruitful in establishing detailed spectral properties of N-body Hamiltonians. A problem that was considered extremely difficult be fore that time, the proof of the absence of a singularly continuous spectrum for such operators, was then solved in a rather straightforward manner (by E. Mourre himself for N = 3 and by P. Perry, 1. Sigal and B. Simon for general N). The Mourre estimate, which is the main input of the method, also has consequences concerning the behaviour of N-body systems at large times. A deeper study of such propagation properties allowed 1. Sigal and A. Soffer in 1985 to prove existence and completeness of wave operators for N-body systems with short range interactions without implicit conditions on the potentials (for N = 3, similar results were obtained before by means of purely time-dependent methods by V. Enss and by K. Sinha, M. Krishna and P. Muthuramalingam). Our interest in commutator methods was raised by the major achievements mentioned above. |
You may like...
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,869
Discovery Miles 28 690
Additive Number Theory of Polynomials…
Gove W. Effinger, David R. Hayes
Hardcover
R1,326
Discovery Miles 13 260
Video Workbook with the Math Coach for…
Jamie Blair, John Tobey, …
Paperback
R1,469
Discovery Miles 14 690
Developing Linear Algebra Codes on…
Sandra Catalan Pallares, Pedro Valero-Lara, …
Hardcover
R5,317
Discovery Miles 53 170
|