![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra
A smart city utilizes ICT technologies to improve the working effectiveness, share various data with the citizens, and enhance political assistance and societal wellbeing. The fundamental needs of a smart and sustainable city are utilizing smart technology for enhancing municipal activities, expanding monetary development, and improving citizens' standards of living. Data-Driven Mathematical Modeling in Smart Cities discusses new mathematical models in smart and sustainable cities using big data, visualization tools in mathematical modeling, machine learning-based mathematical modeling, and more. It further delves into privacy and ethics in data analysis. Covering topics such as deep learning, optimization-based data science, and smart city automation, this premier reference source is an excellent resource for mathematicians, statisticians, computer scientists, civil engineers, government officials, students and educators of higher education, librarians, researchers, and academicians.
This book aims to provide a comprehensive study of the mathematical theory of the vortex method, from its origins in the 1930s, through the developments of the '70s when the use of computers made advanced research possible, to current work on this subject in China and elsewhere. The five chapters treat vortex methods for the Euler and Navier-Stokes equations; mathematical theory for incompressible flows; convergence of vortex methods for the Euler equations; convergence of viscosity splitting; and convergence of the random vortex method. Audience: This volume will be of interest to researchers and graduate students of applied mathematics, scientists in fluid dynamics, and aviation engineers.
Clifford algebras are assuming now an increasing role in theoretical physics. Some of them predominantly larger ones are used in elementary particle theory, especially for a unification of the fundamental interactions. The smaller ones are promoted in more classical domains. This book is intended to demonstrate usefulness of Clifford algebras in classical electrodynamics. Written with a pedagogical aim, it begins with an introductory chapter devoted to multivectors and Clifford algebra for the three-dimensional space. In a later chapter modifications are presented necessary for higher dimension and for the pseudoeuclidean metric of the Minkowski space.Among other advantages one is worth mentioning: Due to a bivectorial description of the magnetic field a notion of force surfaces naturally emerges, which reveals an intimate link between the magnetic field and the electric currents as its sources. Because of the elementary level of presentation, this book can be treated as an introductory course to electromagnetic theory. Numerous illustrations are helpful in visualizing the exposition. Furthermore, each chapter ends with a list of problems which amplify or further illustrate the fundamental arguments.
This book takes a theoretical perspective on the study of school algebra, in which both semiotics and history occur. The Methodological design allows for the interpretation of specific phenomena and the inclusion of evidence not addressed in more general treatments. The book gives priority to "meaning in use" over "formal meaning." These approaches and others of similar nature lead to a focus on competence rather than a user 's activity with mathematical language.
A NATO Advanced Study Institute entitled "Algebraic K-theory: Connections with Geometry and Topology" was held at the Chateau Lake Louise, Lake Louise, Alberta, Canada from December 7 to December 11 of 1987. This meeting was jointly supported by NATO and the Natural Sciences and Engineering Research Council of Canada, and was sponsored in part by the Canadian Mathematical Society. This book is the volume of proceedings for that meeting. Algebraic K-theory is essentially the study of homotopy invariants arising from rings and their associated matrix groups. More importantly perhaps, the subject has become central to the study of the relationship between Topology, Algebraic Geometry and Number Theory. It draws on all of these fields as a subject in its own right, but it serves as well as an effective translator for the application of concepts from one field in another. The papers in this volume are representative of the current state of the subject. They are, for the most part, research papers which are primarily of interest to researchers in the field and to those aspiring to be such. There is a section on problems in this volume which should be of particular interest to students; it contains a discussion of the problems from Gersten's well-known list of 1973, as well as a short list of new problems.
The main purpose of this book is to show how ideas from combinatorial group theory have spread to two other areas of mathematics: the theory of Lie algebras and affine algebraic geometry. Some of these ideas, in turn, came to combinatorial group theory from low-dimensional topology at the beginning of the 20th Century. This book is divided into three fairly independent parts. Part I provides a brief exposition of several classical techniques in combinatorial group theory, namely, methods of Nielsen, Whitehead, and Tietze. Part II contains the main focus of the book. Here the authors show how the aforementioned techniques of combinatorial group theory found their way into affine algebraic geometry, a fascinating area of mathematics that studies polynomials and polynomial mappings. Part III illustrates how ideas from combinatorial group theory contributed to the theory of free algebras. The focus here is on Schreier varieties of algebras (a variety of algebras is said to be Schreier if any subalgebra of a free algebra of this variety is free in the same variety of algebras).
The study of systems of special partial differential operators that arise naturally from the use of Clifford algebra as a calculus tool lies in the heart of Clifford analysis. The focus is on the study of Dirac operators and related ones, together with applications in mathematics, physics and engineering. At the present time, the study of Clifford algebra and Clifford analysis has grown into a major research field. There are two sources of papers in this collection. One is from a satellite conference to the ICM 2002 in Beijing, held August 15-18 at the University of Macau; and the other stems from invited contributions by top-notch experts in the field.
A 30-article volume, introducing an active and attractive part of algebra that has gained much from its position at the crossroads of mathematics over the years. The papers stimulate the reader to consider and actively investigate the topics and problems they contain.
This book arose from a conference on "Singularities and Computer Algebra" which was held at the Pfalz-Akademie Lambrecht in June 2015 in honor of Gert-Martin Greuel's 70th birthday. This unique volume presents a collection of recent original research by some of the leading figures in singularity theory on a broad range of topics including topological and algebraic aspects, classification problems, deformation theory and resolution of singularities. At the same time, the articles highlight a variety of techniques, ranging from theoretical methods to practical tools from computer algebra.Greuel himself made major contributions to the development of both singularity theory and computer algebra. With Gerhard Pfister and Hans Schoenemann, he developed the computer algebra system SINGULAR, which has since become the computational tool of choice for many singularity theorists.The book addresses researchers whose work involves singularity theory and computer algebra from the PhD to expert level.
Two contributions on closely related subjects: the theory of linear algebraic groups and invariant theory, by well-known experts in the fields. The book will be very useful as a reference and research guide to graduate students and researchers in mathematics and theoretical physics.
An overview of the most successful algorithms and techniques for solving large, sparse systems of equations and some algorithms and strategies for solving optimization problems. The most important topics dealt with concern iterative methods, especially Krylov methods, ordering techniques, and some iterative optimization tools. The book is a compendium of theoretical and numerical methods for solving large algebraic systems, special emphasis being placed on convergence and numerical behaviour as affected by rounding errors, accuracy in computing solutions for ill-conditioned matrices, preconditioning effectiveness, ordering procedures, stability factors, hybrid procedures and stopping criteria. Recent advances in numerical matrix calculations are presented, especially methods to accelerate the solution of symmetric and unsymmetric linear systems. Convergence analysis of the multi-grid method using a posteriori error estimation in second order elliptic equations are presented. Some inverse problems are also included. Evolution based software is described, such as genetic algorithms and evolution strategies, relations and class hierarchising to improve the exploration of large search spaces and finding near-global optima. Recent developments in messy genetic algorithms are also described. The tutorial nature of the book makes it suitable for mathematicians, computer scientists, engineers and postgraduates.
This volume proposes and explores a new definition of logarithmic mappings as invertible selectors of multifunctions induced by linear operators with domains and ranges in an algebra over a field of characteristic zero. Several important previously published results are presented. Amongst the applications of logarithmic and antilogarithmic mappings are the solution of linear and nonlinear equations in algebras of square matrices. Some results may also provide numerical algorithms for the approximation of solutions. Audience: Research mathematicians and other scientists of other disciplines whose work involves the solution of equations.
The first book on commutative semigroups was Redei's The theory of .finitely generated commutative semigroups, published in Budapest in 1956. Subsequent years have brought much progress. By 1975 the structure of finite commutative semigroups was fairly well understood. Recent results have perfected this understanding and extended it to finitely generated semigroups. Today's coherent and powerful structure theory is the central subject of the present book. 1. Commutative semigroups are more important than is suggested by the stan- dard examples ofsemigroups, which consist ofvarious kinds oftransformations or arise from finite automata, and are usually quite noncommutative. Commutative of factoriza- semigroups provide a natural setting and a useful tool for the study tion in rings. Additive subsemigroups of N and Nn have close ties to algebraic geometry. Commutative rings are constructed from commutative semigroups as semigroup algebras or power series rings. These areas are all subjects of active research and together account for about half of all current papers on commutative semi groups. Commutative results also invite generalization to larger classes of semigroups. Archimedean decompositions, a comparatively small part oftoday's arsenal, have been generalized extensively, as shown for instance in the upcoming books by Nagy [2001] and Ciric [2002].
'Et moi, .... si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point alit.' human race. It has put common sense back Jules Verne where it belongs. on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bcll o. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and nOD linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
This book has been written in a frankly partisian spirit-we believe that singularity theory offers an extremely useful approach to bifurcation prob lems and we hope to convert the reader to this view. In this preface we will discuss what we feel are the strengths of the singularity theory approach. This discussion then Ieads naturally into a discussion of the contents of the book and the prerequisites for reading it. Let us emphasize that our principal contribution in this area has been to apply pre-existing techniques from singularity theory, especially unfolding theory and classification theory, to bifurcation problems. Many ofthe ideas in this part of singularity theory were originally proposed by Rene Thom; the subject was then developed rigorously by John Matherand extended by V. I. Arnold. In applying this material to bifurcation problems, we were greatly encouraged by how weil the mathematical ideas of singularity theory meshed with the questions addressed by bifurcation theory. Concerning our title, Singularities and Groups in Bifurcation Theory, it should be mentioned that the present text is the first volume in a two-volume sequence. In this volume our emphasis is on singularity theory, with group theory playing a subordinate role. In Volume II the emphasis will be more balanced. Having made these remarks, Iet us set the context for the discussion of the strengths of the singularity theory approach to bifurcation. As we use the term, bifurcation theory is the study of equations with multiple solutions."
One of the characteristics of modern algebra is the development of new tools and concepts for exploring classes of algebraic systems, whereas the research on individual algebraic systems (e. g. , groups, rings, Lie algebras, etc. ) continues along traditional lines. The early work on classes of alge bras was concerned with showing that one class X of algebraic systems is actually contained in another class F. Modern research into the theory of classes was initiated in the 1930's by Birkhoff's work [1] on general varieties of algebras, and Neumann's work [1] on varieties of groups. A. I. Mal'cev made fundamental contributions to this modern development. ln his re ports [1, 3] of 1963 and 1966 to The Fourth All-Union Mathematics Con ference and to another international mathematics congress, striking the ories of classes of algebraic systems were presented. These were later included in his book [5]. International interest in the theory of formations of finite groups was aroused, and rapidly heated up, during this time, thanks to the work of Gaschiitz [8] in 1963, and the work of Carter and Hawkes [1] in 1967. The major topics considered were saturated formations, Fitting classes, and Schunck classes. A class of groups is called a formation if it is closed with respect to homomorphic images and subdirect products. A formation is called saturated provided that G E F whenever Gjip(G) E F.
Mathematical summary for Digital Signal Processing Applications with Matlab consists of Mathematics which is not usually dealt in the DSP core subject, but used in DSP applications. Matlab programs with illustrations are given for the selective topics such as generation of Multivariate Gaussian distributed sample outcomes, Bacterial foraging algorithm, Newton's iteration, Steepest descent algorithm, etc. are given exclusively in the separate chapter. Also Mathematical summary for Digital Signal Processing Applications with Matlab is written in such a way that it is suitable for Non-Mathematical readers and is very much suitable for the beginners who are doing research in Digital Signal Processing.
This book gives a comprehensive account of Mori¿s Program, that is an approach to the following problem: classify all the projective varieties X in P^n over C up to isomorphism. Mori¿s Program is a fusion of the so-called Minimal Model Program and the Iitaka Program toward the biregular and/or birational classification of higher dimensional algebraic varieties. The author presents this theory in an easy and understandable way with lots of background motivation. It is the first book in this extremely important and active area of research and will become a key resource for graduate students.
The purpose of the book is to take stock of the situation
concerning Algebra via Category Theory in the last fifteen years,
where the new and synthetic notions of Mal'cev, protomodular,
homological and semi-abelian categories emerged. These notions
force attention on the fibration of points and allow a unified
treatment of the main algebraic: homological lemmas, Noether
isomorphisms, commutator theory.
This proceedings volume covers a range of research topics in algebra from the Southern Regional Algebra Conference (SRAC) that took place in March 2017. Presenting theory as well as computational methods, featured survey articles and research papers focus on ongoing research in algebraic geometry, ring theory, group theory, and associative algebras. Topics include algebraic groups, combinatorial commutative algebra, computational methods for representations of groups and algebras, group theory, Hopf-Galois theory, hypergroups, Lie superalgebras, matrix analysis, spherical and algebraic spaces, and tropical algebraic geometry. Since 1988, SRAC has been an important event for the algebra research community in the Gulf Coast Region and surrounding states, building a strong network of algebraists that fosters collaboration in research and education. This volume is suitable for graduate students and researchers interested in recent findings in computational and theoretical methods in algebra and representation theory.
This text is an introduction to the representation theory of the symmetric group from three different points of view: via general representation theory, via combinatorial algorithms, and via symmetric functions. It is the only book to deal with all three aspects of this subject at once. The style of presentation is relaxed yet rigorous and the prerequisites have been kept to a minimum¿undergraduate courses in linear algebra and group theory will suffice.
On the occasion of the 150th anniversary of Sophus Lie, an International Work shop "Modern Group Analysis: advanced analytical and computational methods in mathematical physics" has been organized in Acireale (Catania, Sicily, October 27 31, 1992). The Workshop was aimed to enlighten the present state ofthis rapidly expanding branch of applied mathematics. Main topics of the Conference were: * classical Lie groups applied for constructing invariant solutions and conservation laws; * conditional (partial) symmetries; * Backlund transformations; * approximate symmetries; * group analysis of finite-difference equations; * problems of group classification; * software packages in group analysis. The success of the Workshop was due to the participation of many experts in Group Analysis from different countries. This book consists of selected papers presented at the Workshop. We would like to thank the Scientific Committee for the generous support of recommending invited lectures and selecting the papers for this volume, as well as the members of the Organizing Committee for their help. The Workshop was made possible by the financial support of several sponsors that are listed below. It is also a pleasure to thank our colleague Enrico Gregorio for his invaluable help of this volume.
These books grew out of the perception that a number of important conceptual and theoretical advances in research on small group behavior had developed in recent years, but were scattered in rather fragmentary fashion across a diverse literature. Thus, it seemed useful to encourage the formulation of summary accounts. A conference was held in Hamburg with the aim of not only encouraging such developments, but also encouraging the integration of theoretical approaches where possible. These two volumes are the result. Current research on small groups falls roughly into two moderately broad categories, and this classification is reflected in the two books. Volume I addresses theoretical problems associated with the consensual action of task-oriented small groups, whereas Volume II focuses on interpersonal relations and social processes within such groups. The two volumes differ somewhat in that the conceptual work of Volume I tends to address rather strictly defined problems of consensual action, some approaches tending to the axiomatic, whereas the conceptual work described in Volume II is generally less formal and rather general in focus. However, both volumes represent current conceptual work in small group research and can claim to have achieved the original purpose of up-to-date conceptual summaries of progress on new theoretical work.
The theory of finite fields is of central importance in engineering and computer science, because of its applications to error-correcting codes, cryptography, spread-spectrum communications, and digital signal processing. Though not inherently difficult, this subject is almost never taught in depth in mathematics courses, (and even when it is the emphasis is rarely on the practical aspect). Indeed, most students get a brief and superficial survey which is crammed into a course on error-correcting codes. It is the object of this text to remedy this situation by presenting a thorough introduction to the subject which is completely sound mathematically, yet emphasizes those aspects of the subject which have proved to be the most important for applications. This book is unique in several respects. Throughout, the emphasis is on fields of characteristic 2, the fields on which almost all applications are based. The importance of Euclid's algorithm is stressed early and often. Berlekamp's polynomial factoring algorithm is given a complete explanation. The book contains the first treatment of Berlekamp's 1982 bit-serial multiplication circuits, and concludes with a thorough discussion of the theory of m-sequences, which are widely used in communications systems of many kinds.
This book provides a comprehensive treatment of Gr bner bases theory embedded in an introduction to commutative algebra from a computational point of view. The centerpiece of Gr bner bases theory is the Buchberger algorithm, which provides a common generalization of the Euclidean algorithm and the Gaussian elimination algorithm to multivariate polynomial rings. The book explains how the Buchberger algorithm and the theory surrounding it are eminently important both for the mathematical theory and for computational applications. A number of results such as optimized version of the Buchberger algorithm are presented in textbook format for the first time. This book requires no prerequisites other than the mathematical maturity of an advanced undergraduate and is therefore well suited for use as a textbook. At the same time, the comprehensive treatment makes it a valuable source of reference on Gr bner bases theory for mathematicians, computer scientists, and others. Placing a strong emphasis on algorithms and their verification, while making no sacrifices in mathematical rigor, the book spans a bridge between mathematics and computer science. |
You may like...
Additive Number Theory of Polynomials…
Gove W. Effinger, David R. Hayes
Hardcover
R1,326
Discovery Miles 13 260
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,869
Discovery Miles 28 690
Developing Linear Algebra Codes on…
Sandra Catalan Pallares, Pedro Valero-Lara, …
Hardcover
R5,317
Discovery Miles 53 170
Video Workbook with the Math Coach for…
Jamie Blair, John Tobey, …
Paperback
R1,469
Discovery Miles 14 690
|