![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra
This book presents a unified mathematical treatment of diverse problems in the fields of cognitive systems using Clifford, or geometric, algebra. Geometric algebra provides a rich general mathematical framework for the development of the ideas of multilinear algebra, projective and affine geometry, calculus on manifolds, the representation of Lie groups and Lie algebras, and many other areas of applications. By treating a wide spectrum of problems in a common geometric language, the book offers both new insights and new solutions that should be useful to scientists and engineers working in different but related areas of artificial intelligence. It looks at building intelligence systems through the construction of Perception Action Cycles; critical to this concept is incorporating representation and learning in a flexible geometric system. Each chapter is written in accessible terms accompanied by numerous examples and figures that clarify the application of geometric algebra to problems in geometric computing, image processing, computer vision, robotics, neural computing and engineering. Topics and features: *Introduces a nonspecialist to Clifford, or geometric, algebra and it shows applications in artificial intelligence *Thorough discussion of several tasks of signal and image processing, computer vision, robotics, neurocomputing and engineering using the geometric algebra framework *Features the computing frameworks of the linear model n-dimensional affine plane and the nonlinear model of Euclidean space known as the horosphere, and addresses the relationship of these models to conformal, affine and projective geometries *Applications of geometric algebra to other related areas: aeronautics, mechatronics, graphics engineering, and speech processing *Exercises and hints for the development of future computer software packages for extensive calculations in geometric algebra The book is an essential resource for computer scientists, AI researchers, and electrical engineers and includes computer programs to clarify and demonstrate the importance of geometric computing for cognitive systems and artificial autonomous systems research.
Commutative Ring Theory emerged as a distinct field of research in math ematics only at the beginning of the twentieth century. It is rooted in nine teenth century major works in Number Theory and Algebraic Geometry for which it provided a useful tool for proving results. From this humble origin, it flourished into a field of study in its own right of an astonishing richness and interest. Nowadays, one has to specialize in an area of this vast field in order to be able to master its wealth of results and come up with worthwhile contributions. One of the major areas of the field of Commutative Ring Theory is the study of non-Noetherian rings. The last ten years have seen a lively flurry of activity in this area, including: a large number of conferences and special sections at national and international meetings dedicated to presenting its results, an abundance of articles in scientific journals, and a substantial number of books capturing some of its topics. This rapid growth, and the occasion of the new Millennium, prompted us to embark on a project aimed at presenting an overview of the recent research in the area. With this in mind, we invited many of the most prominent researchers in Non-Noetherian Commutative Ring Theory to write expository articles representing the most recent topics of research in this area."
This self-contained work, focusing on the theory of state spaces of C*-algebras and von Neumann algebras, explains how the oriented state space geometrically determines the algebra. The theory of orientation of C*-algebra state spaces is presented with a new approach that does not depend on Jordan algebras, and the theory of orientation of normal state spaces of von Neumann algebras is presented with complete proofs for the first time. The theory of operator algebras was initially motivated by applications to physics, but has recently found unexpected new applications to fields of pure mathematics as diverse as foliations and knot theory. Key features include: * first and only work devoted to state spaces of operator algebras--contains much material not available in existing books * prerequisites are standard graduate courses in real and complex variables, measure theory, and functional analysis * complete proofs of basic results on operator algebras presented so that no previous knowledge in the field is needed * detailed introduction develops basic tools used throughout the text * numerous chapter remarks on advanced topics of independent interest with references to the literature, or discussion of applications to physics "State Spaces of Operator Algebras" is intended for specialists in operator algebras, as well as graduate students and mathematicians seeking an overview of the field. The introduction to C*-algebras and von Neumann algebras may also be of interest in it own right for those wanting a quick introduction to basic concepts in those fields.
With applications in quantum field theory, elementary particle physics and general relativity, this two-volume work studies invariance of differential operators under Lie algebras, quantum groups, superalgebras including infinite-dimensional cases, Schroedinger algebras, applications to holography. This first volume covers the general aspects of Lie algebras and group theory supplemented by many concrete examples for a great variety of noncompact semisimple Lie algebras and groups. Contents: Introduction Lie Algebras and Groups Real Semisimple Lie Algebras Invariant Differential Operators Case of the Anti-de Sitter Group Conformal Case in 4D Kazhdan-Lusztig Polynomials, Subsingular Vectors, and Conditionally Invariant Equations Invariant Differential Operators for Noncompact Lie Algebras Parabolically Related to Conformal Lie Algebras Multilinear Invariant Differential Operators from New Generalized Verma Modules Bibliography Author Index Subject Index
In semigroup theory there are certain kinds of band decompositions, which are very useful in the study of the structure semigroups. There are a number of special semigroup classes in which these decompositions can be used very successfully. The book focuses attention on such classes of semigroups. Some of them are partially discussed in earlier books, but in the last thirty years new semigroup classes have appeared and a fairly large body of material has been published on them. The book provides a systematic review on this subject. The first chapter is an introduction. The remaining chapters are devoted to special semigroup classes. These are Putcha semigroups, commutative semigroups, weakly commutative semigroups, R-Commutative semigroups, conditionally commutative semigroups, RC-commutative semigroups, quasi commutative semigroups, medial semigroups, right commutative semigroups, externally commutative semigroups, E-m semigroups, WE-m semigroups, weakly exponential semigroups, (m, n)-commutative semigroups and n(2)-permutable semigroups. Audience: Students and researchers working in algebra and computer science.
Some Historical Background This book deals with the cohomology of groups, particularly finite ones. Historically, the subject has been one of significant interaction between algebra and topology and has directly led to the creation of such important areas of mathematics as homo logical algebra and algebraic K-theory. It arose primarily in the 1920's and 1930's independently in number theory and topology. In topology the main focus was on the work ofH. Hopf, but B. Eckmann, S. Eilenberg, and S. MacLane (among others) made significant contributions. The main thrust of the early work here was to try to understand the meanings of the low dimensional homology groups of a space X. For example, if the universal cover of X was three connected, it was known that H2(X; A. ) depends only on the fundamental group of X. Group cohomology initially appeared to explain this dependence. In number theory, group cohomology arose as a natural device for describing the main theorems of class field theory and, in particular, for describing and analyzing the Brauer group of a field. It also arose naturally in the study of group extensions, N"
This volume begins with a description of Alladi Ramakrishnan's remarkable scientific career and his grand vision that led to the creation of The Institute of Mathematical Sciences (MATSCIENCE), in Madras (now Chennai), India, in 1962. The lists of his research publications, his PhD students, and other relevant facts relating to his eventful career are included. The inclusion of both research and survey articles by leading mathematicians, statisticians, and physicists who got to know Alladi Ramakrishnan over the years and admired his significant contributions to research and to the scientific profession, have been written and dedicated in this volume to Ramakrishnan's memory.
This book consists of eighteen articles in the area of `Combinatorial Matrix Theory' and `Generalized Inverses of Matrices'. Original research and expository articles presented in this publication are written by leading Mathematicians and Statisticians working in these areas. The articles contained herein are on the following general topics: `matrices in graph theory', `generalized inverses of matrices', `matrix methods in statistics' and `magic squares'. In the area of matrices and graphs, speci_c topics addressed in this volume include energy of graphs, q-analog, immanants of matrices and graph realization of product of adjacency matrices. Topics in the book from `Matrix Methods in Statistics' are, for example, the analysis of BLUE via eigenvalues of covariance matrix, copulas, error orthogonal model, and orthogonal projectors in the linear regression models. Moore-Penrose inverse of perturbed operators, reverse order law in the case of inde_nite inner product space, approximation numbers, condition numbers, idempotent matrices, semiring of nonnegative matrices, regular matrices over incline and partial order of matrices are the topics addressed under the area of theory of generalized inverses. In addition to the above traditional topics and a report on CMTGIM 2012 as an appendix, we have an article on old magic squares from India.
This book is a collection of the various old and new results, centered around the following simple and beautiful observation of J.L. Walsh - If a function is analytic in a finite disc, and not in a larger disc, then the difference between the Lagrange interpolant of the function, at the roots of unity, and the partial sums of the Taylor series, about the origin, tends to zero in a larger disc than the radius of convergence of the Taylor series, while each of these operators converges only in the original disc. This book will be particularly useful for researchers in approximation and interpolation theory.
Spinors are used extensively in physics. It is widely accepted that they are more fundamental than tensors, and the easy way to see this is through the results obtained in general relativity theory by using spinors -- results that could not have been obtained by using tensor methods only. The foundation of the concept of spinors is groups; spinors appear as representations of groups. This textbook expounds the relationship between spinors and representations of groups. As is well known, spinors and representations are both widely used in the theory of elementary particles. The authors present the origin of spinors from representation theory, but nevertheless apply the theory of spinors to general relativity theory, and part of the book is devoted to curved space-time applications. Based on lectures given at Ben Gurion University, this textbook is intended for advanced undergraduate and graduate students in physics and mathematics, as well as being a reference for researchers.
Fifteen years ago, most mathematicians who worked in the intersection of function theory and operator theory thought that progress on the Bergman spaces was unlikely, yet today the situation has completely changed. For several years, research interest and activity have expanded in this area and there are now rich theories describing the Bergman spaces and their operators. This book is a timely treatment of the theory, written by three of the major players in the field.
The main theme in classical ring theory is the structure theory of rings of a particular kind. For example, no one text book in ring theory could miss the Wedderburn-Artin theorem, which says that a ring R is semisimple Artinian iffR is isomorphic to a finite direct sum of full matrix rings over skew fields. This is an example of a finiteness condition which, at least historically, has dominated in ring theory. Ifwe would like to consider a requirement of a lattice-theoretical type, other than being Artinian or Noetherian, the most natural is uni-seriality. Here a module M is called uni-serial if its lattice of submodules is a chain, and a ring R is uni-serial if both RR and RR are uni-serial modules. The class of uni-serial rings includes commutative valuation rings and closed under homomorphic images. But it is not closed under direct sums nor with respect to Morita equivalence: a matrix ring over a uni-serial ring is not uni-serial. There is a class of rings which is very close to uni-serial but closed under the constructions just mentioned: serial rings. A ring R is called serial if RR and RR is a direct sum (necessarily finite) of uni-serial modules. Amongst others this class includes triangular matrix rings over a skew field. Also if F is a finite field of characteristic p and G is a finite group with a cyclic normal p-Sylow subgroup, then the group ring FG is serial.
This present volume is the Proceedings of the 14th International Conference on Near rings and Nearfields held in Hamburg at the Universitiit der Bundeswehr Hamburg, from July 30 to August 06, 1995. This Conference was attended by 70 mathematicians and many accompanying persons who represented 22 different countries from all five continents. Thus it was the largest conference devoted entirely to nearrings and nearfields. The first of these conferences took place in 1968 at the Mathematische For schungsinstitut Oberwolfach, Germany. This was also the site of the conferences in 1972, 1976, 1980 and 1989. The other eight conferences held before the Hamburg Conference took place in eight different countries. For details about this and, more over, for a general historical overview of the development of the subject, we refer to the article "On the beginnings and development of near-ring theory" by G. Betsch 3]. During the last forty years the theory of nearrings and related algebraic struc tures like nearfields, nearmodules, nearalgebras and seminearrings has developed into an extensive branch of algebra with its own features. In its position between group theory and ring theory, this relatively young branch of algebra has not only a close relationship to these two more well-known areas of algebra, but it also has, just as these two theories, very intensive connections to many further branches of mathematics."
Many results, both from semi group theory itself and from the applied sciences, are phrased in discipline-specific languages and hence are hardly known to a broader community. This volume contains a selection of lectures presented at a conference that was organised as a forum for all mathematicians using semi group theory to learn what is happening outside their own field of research. The collection will help to establish a number of new links between various sub-disciplines of semigroup theory, stochastic processes, differential equations and the applied fields. The theory of semigroups of operators is a well-developed branch of functional analysis. Its foundations were laid at the beginning of the 20th century, while the fundamental generation theorem of Hille and Yosida dates back to the forties. The theory was, from the very beginning, designed as a universal language for partial differential equations and stochastic processes, but at the same time it started to live as an independent branch of operator theory. Nowadays, it still has the same distinctive flavour: it develops rapidly by posing new 'internal' questions and in answering them, discovering new methods that can be used in applications. On the other hand, it is influenced by questions from PDEs and stochastic processes as well as from applied sciences such as mathematical biology and optimal control, and thus it continually gathers a new momentum. Researchers and postgraduate students working in operator theory, partial differential equations, probability and stochastic processes, analytical methods in biology and other natural sciences, optimization and optimal control will find this volume useful.
This book is a revised and up-dated fourth edition of a textbook designed for upper division courses in linear algebra. It includes the basic results on vector spaces over fields, determinants, the theory of a single linear tranformation, and inner product spaces. While it does not presuppose an ealier course, many connections between linear algebrta and calculus are worked into the discussion, making it best suited for students who have completed the calulus sequence. A special feature of the book is the inclusion of sections devoted to applications of linear algebra, which can either be part of a course, or used for independent study. The topics covered in these secions are the geometric interpretation of systems of linear equations, the classification of finite symmetry groups in two and three dimensions, the exponential of a matrix and its application to solving systems of first order linear differential equations with constant coefficients, and Hurwitz's theorem on the composition of quadratic forms. This revised fourth edition contains a new section on analytic methods in matrix theory, with applications to Markov chains in probability theory. Proofs of all the main theorems are included, and are presented on an equal footing with methods for solving numerical problems. Worked examples are included in almost every section, to bring out the meaning of the theorems, and to illustrate techniques for solving problems. Many numerical exercises are included, which use all the ideas, and develop computational skills. There are also exercises of a theoretical nature, which provide opportunities for students to discover interesting theings for themselves.
Polynomial extremal problems (PEP) constitute one of the most important subclasses of nonlinear programming models. Their distinctive feature is that an objective function and constraints can be expressed by polynomial functions in one or several variables. Let: e = {: e 1, ...: en} be the vector in n-dimensional real linear space Rn; n PO(: e), PI (: e), ..., Pm (: e) are polynomial functions in R with real coefficients. In general, a PEP can be formulated in the following form: (0.1) find r = inf Po(: e) subject to constraints (0.2) Pi (: e) =0, i=l, ..., m (a constraint in the form of inequality can be written in the form of equality by introducing a new variable: for example, P( x) 0 is equivalent to P(: e) + y2 = 0). Boolean and mixed polynomial problems can be written in usual form by adding for each boolean variable z the equality: Z2 - Z = O. Let a = {al, ..., a } be integer vector with nonnegative entries {a;}f=l. n Denote by R a](: e) monomial in n variables of the form: n R a](: e) = IT: ef';;=1 d(a) = 2:7=1 ai is the total degree of monomial R a]. Each polynomial in n variables can be written as sum of monomials with nonzero coefficients: P(: e) = L caR a](: e), aEA{P) IX x Nondifferentiable optimization and polynomial problems where A(P) is the set of monomials contained in polynomial P
The Virasoro algebra is an infinite dimensional Lie algebra that plays an increasingly important role in mathematics and theoretical physics. This book describes some fundamental facts about the representation theory of the Virasoro algebra in a self-contained manner. Topics include the structure of Verma modules and Fock modules, the classification of (unitarizable) Harish-Chandra modules, tilting equivalence, and the rational vertex operator algebras associated to the so-called minimal series representations. Covering a wide range of material, this book has three appendices which provide background information required for some of the chapters. The authors organize fundamental results in a unified way and refine existing proofs. For instance in chapter three, a generalization of Jantzen filtration is reformulated in an algebraic manner, and geometric interpretation is provided. Statements, widely believed to be true, are collated, and results which are known but not verified are proven, such as the corrected structure theorem of Fock modules in chapter eight. This book will be of interest to a wide range of mathematicians and physicists from the level of graduate students to researchers.
Group sequential methods answer the needs of clinical trial monitoring committees who must assess the data available at an interim analysis. These interim results may provide grounds for terminating the study-effectively reducing costs-or may benefit the general patient population by allowing early dissemination of its findings. Group sequential methods provide a means to balance the ethical and financial advantages of stopping a study early against the risk of an incorrect conclusion.
This book, in some sense, began to be written by the first author in 1983, when optional lectures on Abelian groups were held at the Fac ulty of Mathematics and Computer Science, 'Babes-Bolyai' University in Cluj-Napoca, Romania. From 1992, these lectures were extended to a twosemester electivecourse on abelian groups for undergraduate stu dents, followed by a twosemester course on the same topic for graduate students in Algebra. All the other authors attended these two years of lectures and are now Assistants to the Chair of Algebra of this Fac ulty. The first draft of this collection, including only exercises solved by students as home works, the last ten years, had 160pages. We felt that there is a need for a book such as this one, because it would provide a nice bridge between introductory Abelian Group Theory and more advanced research problems. The book InfiniteAbelianGroups, published by LaszloFuchsin two volumes 1970 and 1973 willwithout doubt last as the most important guide for abelian group theorists. Many exercises are selected from this source but there are plenty of other bibliographical items (see the Bibliography) which were used in order to make up this collection. For some of the problems stated, recent developments are also given. Nevertheless, there are plenty of elementary results (the so called 'folklore') in Abelian Group Theory whichdo not appear in any written material. It is also one purpose of this book to complete this gap."
This book is by far the most comprehensive treatment of point and space groups, and their meaning and applications. Its completeness makes it especially useful as a text, since it gives the instructor the flexibility to best fit the class and goals. The instructor, not the author, decides what is in the course. And it is the prime book for reference, as material is much more likely to be found in it than in any other book; it also provides detailed guides to other sources.Much of what is taught is folklore, things everyone knows are true, but (almost?) no one knows why, or has seen proofs, justifications, rationales or explanations. (Why are there 14 Bravais lattices, and why these? Are the reasons geometrical, conventional or both? What determines the Wigner-Seitz cells? How do they affect the number of Bravais lattices? Why are symmetry groups relevant to molecules whose vibrations make them unsymmetrical? And so on). Here these analyses are given, interrelated, and in-depth. The understanding so obtained gives a strong foundation for application and extension. Assumptions and restrictions are not merely made explicit, but also emphasized.In order to provide so much information, details and examples, and ways of helping readers learn and understand, the book contains many topics found nowhere else, or only in obscure articles from the distant past. The treatment is (often completely) different from those elsewhere. At least in the explanations, and usually in many other ways, the book is completely new and fresh. It is designed to inform, educate and make the reader think. It strongly emphasizes understanding.The book can be used at many levels, by many different classes of readers - from those who merely want brief explanations (perhaps just of terminology), who just want to skim, to those who wish the most thorough understanding. remove remove
The present book deals with factorization problems for matrix and operator functions. The problems originate from, or are motivated by, the theory of non-selfadjoint operators, the theory of matrix polynomials, mathematical systems and control theory, the theory of Riccati equations, inversion of convolution operators, theory of job scheduling in operations research. The book systematically employs a geometric principle of factorization which has its origins in the state space theory of linear input-output systems and in the theory of characteristic operator functions. This principle allows one to deal with different factorizations from one point of view. Covered are canonical factorization, minimal and non-minimal factorizations, pseudo-canonical factorization, and various types of degree one factorization. Considerable attention is given to the matter of stability of factorization which in terms of the state space method involves stability of invariant subspaces.invariant subspaces.
"Categorical Perspectives" consists of introductory surveys as well as articles containing original research and complete proofs devoted mainly to the theoretical and foundational developments of category theory and its applications to other fields. A number of articles in the areas of topology, algebra and computer science reflect the varied interests of George Strecker to whom this work is dedicated. Notable also are an exposition of the contributions and importance of George Strecker's research and a survey chapter on general category theory. This work is an excellent reference text for researchers and graduate students in category theory and related areas. Contributors: H.L. Bentley * G. Castellini * R. El Bashir * H. Herrlich * M. Husek * L. Janos * J. Koslowski * V.A. Lemin * A. Melton * G. Preua * Y.T. Rhineghost * B.S.W. Schroeder * L. Schr"der * G.E. Strecker * A. Zmrzlina" |
You may like...
Additive Number Theory of Polynomials…
Gove W. Effinger, David R. Hayes
Hardcover
R1,326
Discovery Miles 13 260
Developing Linear Algebra Codes on…
Sandra Catalan Pallares, Pedro Valero-Lara, …
Hardcover
R5,317
Discovery Miles 53 170
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,869
Discovery Miles 28 690
Video Workbook with the Math Coach for…
Jamie Blair, John Tobey, …
Paperback
R1,469
Discovery Miles 14 690
|