![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra
This book gives a self-contained introduction to the theory of lambda-rings and closely related topics, including Witt vectors, integer-valued polynomials, and binomial rings. Many of the purely algebraic results about lambda-rings presented in this book have never appeared in book form before. This book concludes with a chapter on open problems related to lambda-rings.
This book features papers presented during a special session on algebra, functional analysis, complex analysis, and pluripotential theory. Research articles focus on topics such as slow convergence, spectral expansion, holomorphic extension, m-subharmonic functions, pseudo-Galilean group, involutive algebra, Log-integrable measurable functions, Gibbs measures, harmonic and analytic functions, local automorphisms, Lie algebras, and Leibniz algebras. Many of the papers address the theory of harmonic functions, and the book includes a number of extensive survey papers. Graduate and researchers interested in functional analysis, complex analysis, operator algebras and non-associative algebras will find this book relevant to their studies. The special session was part of the second USA-Uzbekistan Conference on Analysis and Mathematical Physics held on August 8-12, 2017 at Urgench State University (Uzbekistan). The conference encouraged communication and future collaboration among U.S. mathematicians and their counterparts in Uzbekistan and other countries. Main themes included algebra and functional analysis, dynamical systems, mathematical physics and partial differential equations, probability theory and mathematical statistics, and pluripotential theory. A number of significant, recently established results were disseminated at the conference's scheduled plenary talks, while invited talks presented a broad spectrum of findings in several sessions. Based on a different session from the conference, Differential Equations and Dynamical Systems is also published in the Springer Proceedings in Mathematics & Statistics Series.
This 3. edition is an introduction to classical knot theory. It contains many figures and some tables of invariants of knots. This comprehensive account is an indispensable reference source for anyone interested in both classical and modern knot theory. Most of the topics considered in the book are developed in detail; only the main properties of fundamental groups and some basic results of combinatorial group theory are assumed to be known.
There is no recent elementary introduction to the theory of discrete dynamical systems that stresses the topological background of the topic. This book fills this gap: it deals with this theory as 'applied general topology'. We treat all important concepts needed to understand recent literature. The book is addressed primarily to graduate students. The prerequisites for understanding this book are modest: a certain mathematical maturity and course in General Topology are sufficient.
This market-leading text continues to provide students and instructors with sound, consistently structured explanations of the mathematical concepts. Designed for a one-term course that prepares students for further study in mathematics, the new ninth edition retains the features that have always made COLLEGE ALGEBRA a complete solution for both students and instructors: interesting applications, pedagogically effective design, and innovative technology combined with an abundance of carefully developed examples and exercises.
Aside from distribution theory, projections and the singular value decomposition (SVD) are the two most important concepts for understanding the basic mechanism of multivariate analysis. The former underlies the least squares estimation in regression analysis, which is essentially a projection of one subspace onto another, and the latter underlies principal component analysis, which seeks to find a subspace that captures the largest variability in the original space. This book is about projections and SVD. A thorough discussion of generalized inverse (g-inverse) matrices is also given because it is closely related to the former. The book provides systematic and in-depth accounts of these concepts from a unified viewpoint of linear transformations finite dimensional vector spaces. More specially, it shows that projection matrices (projectors) and g-inverse matrices can be defined in various ways so that a vector space is decomposed into a direct-sum of (disjoint) subspaces. Projection Matrices, Generalized Inverse Matrices, and Singular Value Decomposition will be useful for researchers, practitioners, and students in applied mathematics, statistics, engineering, behaviormetrics, and other fields.
There are many approaches to noncommutative geometry and its use in physics, the ? operator algebra and C -algebra one, the deformation quantization one, the qu- tum group one, and the matrix algebra/fuzzy geometry one. This volume introduces and develops the subject by presenting in particular the ideas and methods recently pursued by Julius Wess and his group. These methods combine the deformation quantization approach based on the - tion of star product and the deformed (quantum) symmetries methods based on the theory of quantum groups. The merging of these two techniques has proven very fruitful in order to formulate ?eld theories on noncommutative spaces. The aim of the book is to give an introduction to these topics and to prepare the reader to enter the research ?eld himself/herself. This has developed from the constant interest of Prof. W. Beiglboeck, editor of LNP, in this project, and from the authors experience in conferences and schools on the subject, especially from their interaction with students and young researchers. In fact quite a few chapters in the book were written with a double purpose, on the one hand as contributions for school or conference proceedings and on the other handaschaptersforthepresentbook.Thesearenowharmonizedandcomplemented by a couple of contributions that have been written to provide a wider background, to widen the scope, and to underline the power of our methods.
The book is complemented by biographical information. This volume is dedicated to Peter Lancaster, an outstanding expert in operator and matrix theory, numerical analysis and applications, on the occasion of his seventieth birthday. The book contains a selection of recent original research papers in linear algebra and analysis, areas in which Peter Lancaster was very active. The articles are complemented by biographical data and a list of publications. Contributed volume in honor of Peter Lancaster, an outstanding expert in operator theory, matrix theory and numerical analysis. The articles have been carefully selected and refereed and cover topics in linear algebra and analysis where Peter Lancaster was very active.
One of the beautiful results in the representation theory of the finite groups is McKay's theorem on a correspondence between representations of the binary polyhedral group of SU(2) and vertices of an extended simply-laced Dynkin diagram. The Coxeter transformation is the main tool in the proof of the McKay correspondence, and is closely interrelated with the Cartan matrix and Poincare series. The Coxeter functors constructed by Bernstein, Gelfand and Ponomarev plays a distinguished role in the representation theory of quivers. On these pages, the ideas and formulas due to J. N. Bernstein, I. M. Gelfand and V. A. Ponomarev, H.S.M. Coxeter, V. Dlab and C.M. Ringel, V. Kac, J. McKay, T.A. Springer, B. Kostant, P. Slodowy, R. Steinberg, W. Ebeling and several other authors, as well as the author and his colleagues from Subbotin's seminar, are presented in detail. Several proofs seem to be new. "
In 1917, Johann Radon published his fundamental work, where he introduced what is now called the Radon transform. Including important contributions by several experts, this book reports on ground-breaking developments related to the Radon transform throughout these years, and also discusses novel mathematical research topics and applications for the next century.
This book addresses selected topics in the theory of generalized inverses. Following a discussion of the "reverse order law" problem and certain problems involving completions of operator matrices, it subsequently presents a specific approach to solving the problem of the reverse order law for {1} -generalized inverses. Particular emphasis is placed on the existence of Drazin invertible completions of an upper triangular operator matrix; on the invertibility and different types of generalized invertibility of a linear combination of operators on Hilbert spaces and Banach algebra elements; on the problem of finding representations of the Drazin inverse of a 2x2 block matrix; and on selected additive results and algebraic properties for the Drazin inverse. In addition to the clarity of its content, the book discusses the relevant open problems for each topic discussed. Comments on the latest references on generalized inverses are also included. Accordingly, the book will be useful for graduate students, PhD students and researchers, but also for a broader readership interested in these topics.
Over the last decade, Computational Fluid Dynamics (CFD) has become a - ture technology for the development of new products in aeronautical industry. Aerodynamic design engineers have progressively taken advantage of the pos- bilities o?ered by the numericalsolutionof the Reynolds averagedNavier-Stokes (RANS) equations. Signi?cant improvements in physical modeling and solution algorithms as well as the enormous increase of computer power enable hi- ?delity numerical simulations in all stages of aircraft development. In Germany, the national CFD project MEGAFLOW furthered the dev- opment and availability of RANS solvers for the prediction of complex ?ow problemssigni?cantly. MEGAFLOWwasinitiated by the?rstaviationresearch programoftheFederalGovernmentin1995undertheleadershipoftheDLR(see Kroll, N. , Fassbender, J. K. (Eds). : MEGAFLOW - Numerical Flow Simulation for Aircraft Design; Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Volume 89, Springer, 2005). A network from aircraft industry, DLR and several universities was created with the goal to focus and direct development activities for numerical ?ow simulation towards a common aerodynamic si- lation system providing both a block-structured (FLOWer-Code) and a hybrid (TAU-Code) parallel ? ow prediction capability. Today, both codes have reached a high level of maturity and reliability. They are routinely used at DLR and German aeronautic industry for a wide range of aerodynamic applications. For many universities the MEGAFLOW software represents a platform for the - provementofphysicalmodelsandfortheinvestigationofcomplex?owproblems. The network was established as an e?cient group of very closely co-operating partners with supplementing expertises and experience.
Drawing on their extensive teaching experience, the authors bring the content to life using humorous and engaging language and show students how the principles of behavior relate to their everyday lives. The text's tried-and-true pedagogy make the content as clear as possible without oversimplifying the concepts. Each chapter includes study objectives, key terms, and review questions that encourage students to check their understanding before moving on, and incorporated throughout the text are real-world examples and case studies to illustrate key concepts and principles.This edition also features a new full-color design and nearly 400 color figures, tables, and graphs. The text is carefully tailored to the length of a standard academic semester and how behavior analysis courses are taught, with each section corresponding to a week's worth of coursework, and each chapter is integrated with the task list for Behavior Analyst Certification Board (BACB) certifications.
Identity Based Encryption (IBE) is a type of public key encryption and has been intensely researched in the past decade. Identity-Based Encryption summarizes the available research for IBE and the main ideas that would enable users to pursue further work in this area. This book will also cover a brief background on Elliptic Curves and Pairings, security against chosen Cipher text Attacks, standards and more. Advanced-level students in computer science and mathematics who specialize in cryptology, and the general community of researchers in the area of cryptology and data security will find Identity-Based Encryption a useful book. Practitioners and engineers who work with real-world IBE schemes and need a proper understanding of the basic IBE techniques, will also find this book a valuable asset.
This edited volume features a curated selection of research in algebraic combinatorics that explores the boundaries of current knowledge in the field. Focusing on topics experiencing broad interest and rapid growth, invited contributors offer survey articles on representation theory, symmetric functions, invariant theory, and the combinatorics of Young tableaux. The volume also addresses subjects at the intersection of algebra, combinatorics, and geometry, including the study of polytopes, lattice points, hyperplane arrangements, crystal graphs, and Grassmannians. All surveys are written at an introductory level that emphasizes recent developments and open problems. An interactive tutorial on Schubert Calculus emphasizes the geometric and topological aspects of the topic and is suitable for combinatorialists as well as geometrically minded researchers seeking to gain familiarity with relevant combinatorial tools. Featured authors include prominent women in the field known for their exceptional writing of deep mathematics in an accessible manner. Each article in this volume was reviewed independently by two referees. The volume is suitable for graduate students and researchers interested in algebraic combinatorics.
This book is a lightly edited version of the unpublished manuscript Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings by Ragnar-Olaf Buchweitz. The central objects of study are maximal Cohen-Macaulay modules over (not necessarily commutative) Gorenstein rings. The main result is that the stable category of maximal Cohen-Macaulay modules over a Gorenstein ring is equivalent to the stable derived category and also to the homotopy category of acyclic complexes of projective modules. This assimilates and significantly extends earlier work of Eisenbud on hypersurface singularities. There is also an extensive discussion of duality phenomena in stable derived categories, extending Tate duality on cohomology of finite groups. Another noteworthy aspect is an extension of the classical BGG correspondence to super-algebras. There are numerous examples that illustrate these ideas. The text includes a survey of developments subsequent to, and connected with, Buchweitz's manuscript.
Thisbookisintendedasanintroductiontoallthe?nitesimplegroups.During themonumentalstruggletoclassifythe?nitesimplegroups(andindeedsince), a huge amount of information about these groups has been accumulated. Conveyingthisinformationtothenextgenerationofstudentsandresearchers, not to mention those who might wish to apply this knowledge, has become a major challenge. With the publication of the two volumes by Aschbacher and Smith [12, 13] in 2004 we can reasonably regard the proof of the Classi?cation Theorem for Finite Simple Groups (usually abbreviated CFSG) as complete. Thus it is timely to attempt an overview of all the (non-abelian) ?nite simple groups in one volume. For expository purposes it is convenient to divide them into four basic types, namely the alternating, classical, exceptional and sporadic groups. The study of alternating groups soon develops into the theory of per- tation groups, which is well served by the classic text of Wielandt [170]and more modern treatments such as the comprehensive introduction by Dixon and Mortimer [53] and more specialised texts such as that of Cameron [19].
This volume is a collection of chapters covering recent advances
in stochastic optimal control theory and algebraic systems theory.
The book will be a useful reference for researchers and graduate
students in systems and control, algebraic systems theory, and
applied mathematics. Requiring only knowledge of
undergraduate-level control and systems theory, the work may be
used as a supplementary textbook in a graduate course on optimal
control or algebraic systems theory.
The main focus of this thesis is the mathematical structure of Group Field Theories (GFTs) from the point of view of renormalization theory. Such quantum field theories are found in approaches to quantum gravity related, on the one hand, to Loop Quantum Gravity (LQG) and on the other, to matrix- and tensor models. Background material on these topics, including conceptual and technical aspects, are introduced in the first chapters. The work then goes on to explain how the standard tools of Quantum Field Theory can be generalized to GFTs and exploited to study the large cut-off behaviour and renormalization group transformations of the latter. Among the new results derived in this context are a proof of renormalizability of a three-dimensional GFT with gauge group SU(2), which opens the way to applications of the formalism to quantum gravity.
This book consists of both expository and research articles solicited from speakers at the conference entitled "Arithmetic and Ideal Theory of Rings and Semigroups," held September 22-26, 2014 at the University of Graz, Graz, Austria. It reflects recent trends in multiplicative ideal theory and factorization theory, and brings together for the first time in one volume both commutative and non-commutative perspectives on these areas, which have their roots in number theory, commutative algebra, and algebraic geometry. Topics discussed include topological aspects in ring theory, Prufer domains of integer-valued polynomials and their monadic submonoids, and semigroup algebras. It will be of interest to practitioners of mathematics and computer science, and researchers in multiplicative ideal theory, factorization theory, number theory, and algebraic geometry.
Traditionally, Lie Theory is a tool to build mathematical models
for physical systems. Recently, the trend is towards geometrisation
of the mathematical description of physical systems and objects. A
geometric approach to a system yields in general some notion of
symmetry which is very helpful in understanding its structure.
Geometrisation and symmetries are meant in their broadest sense,
i.e., classical geometry, differential geometry, groups and quantum
groups, infinite-dimensional (super-)algebras, and their
representations. Furthermore, we include the necessary tools from
functional analysis and number theory. This is a large
interdisciplinary and interrelated field.
This book provides an extensive treatment of Potential Theory for sub-Laplacians on stratified Lie groups. It also provides a largely self-contained presentation of stratified Lie groups, and of their Lie algebra of left-invariant vector fields. The presentation is accessible to graduate students and requires no specialized knowledge in algebra or differential geometry.
The book offers a new approach to information theory that is more general then the classical approach by Shannon. The classical definition of information is given for an alphabet of symbols or for a set of mutually exclusive propositions (a partition of the probability space ) with corresponding probabilities adding up to 1. The new definition is given for an arbitrary cover of , i.e. for a set of possibly overlapping propositions. The generalized information concept is called novelty and it is accompanied by two new concepts derived from it, designated as information and surprise, which describe "opposite" versions of novelty, information being related more to classical information theory and surprise being related more to the classical concept of statistical significance. In the discussion of these three concepts and their interrelations several properties or classes of covers are defined, which turn out to be lattices. The book also presents applications of these new concepts, mostly in statistics and in neuroscience. |
You may like...
Elementary Treatise on Mechanics - for…
William G (William Guy) 1820- Peck
Hardcover
R887
Discovery Miles 8 870
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,869
Discovery Miles 28 690
Video Workbook with the Math Coach for…
Jamie Blair, John Tobey, …
Paperback
R1,469
Discovery Miles 14 690
Algebra for Beginners - With Numerous…
I. (Isaac) 1820-1884 Todhunter
Hardcover
R889
Discovery Miles 8 890
|