![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra
The most practical, complete, and accessible guide for understanding algebra If you want to make sense of algebra, check out Practical Algebra: A Self-Teaching Guide. Written by two experienced classroom teachers, this Third Edition is completely revised to align with the Common Core Algebra I math standards used in many states. You'll get an overview of solving linear and quadratic equations, using ratios and proportions, decoding word problems, graphing and interpreting functions, modeling the real world with statistics, and other concepts found in today's algebra courses. This book also contains a brief review of pre-algebra topics, including arithmetic and fractions. It has concrete strategies that help diverse students to succeed, such as: over 500 images and tables that illustrate important concepts over 200 model examples with complete solutions almost 1,500 exercises with answers so you can monitor your progress Practical Algebra emphasizes making connections to what you already know and what you'll learn in the future. You'll learn to see algebra as a logical and consistent system of ideas and see how it connects to other mathematical topics. This book makes math more accessible by treating it as a language. It has tips for pronouncing and using mathematical notation, a glossary of commonly used terms in algebra, and a glossary of symbols. Along the way, you'll discover how different cultures around the world over thousands of years developed many of the mathematical ideas we use today. Since students nowadays can use a variety of tools to handle complex modeling tasks, this book contains technology tips that apply no matter what device you're using. It also describes strategies for avoiding common mistakes that students make. By working through Practical Algebra, you'll learn straightforward techniques for solving problems, and understand why these techniques work so you'll retain what you've learned. You (or your students) will come away with better scores on algebra tests and a greater confidence in your ability to do math.
Complex analysis is found in many areas of applied mathematics, from fluid mechanics, thermodynamics, signal processing, control theory, mechanical and electrical engineering to quantum mechanics, among others. And of course, it is a fundamental branch of pure mathematics. The coverage in this text includes advanced topics that are not always considered in more elementary texts. These topics include, a detailed treatment of univalent functions, harmonic functions, subharmonic and superharmonic functions, Nevanlinna theory, normal families, hyperbolic geometry, iteration of rational functions, and analytic number theory. As well, the text includes in depth discussions of the Dirichlet Problem, Green's function, Riemann Hypothesis, and the Laplace transform. Some beautiful color illustrations supplement the text of this most elegant subject.
The Linear Algebra Survival Guide offers a concise introduction to the difficult core topics of linear algebra, guiding you through the powerful graphic displays and visualization of Mathematica that make the most abstract theories seem simple - allowing you to tackle realistic problems using simple mathematical manipulations. This resource is therefore a guide to learning the content of Mathematica in a practical way, enabling you to manipulate potential solutions/outcomes, and learn creatively. No starting knowledge of the Mathematica system is required to use the book. Desktop, laptop, web-based versions of Mathematica are available on all major platforms. Mathematica Online for tablet and smartphone systems are also under development and increases the reach of the guide as a general reference, teaching and learning tool.
Numerical Linear Algebra with Applications is designed for those who want to gain a practical knowledge of modern computational techniques for the numerical solution of linear algebra problems, using MATLAB as the vehicle for computation. The book contains all the material necessary for a first year graduate or advanced undergraduate course on numerical linear algebra with numerous applications to engineering and science. With a unified presentation of computation, basic algorithm analysis, and numerical methods to compute solutions, this book is ideal for solving real-world problems. The text consists of six introductory chapters that thoroughly provide the required background for those who have not taken a course in applied or theoretical linear algebra. It explains in great detail the algorithms necessary for the accurate computation of the solution to the most frequently occurring problems in numerical linear algebra. In addition to examples from engineering and science applications, proofs of required results are provided without leaving out critical details. The Preface suggests ways in which the book can be used with or without an intensive study of proofs. This book will be a useful reference for graduate or advanced undergraduate students in engineering, science, and mathematics. It will also appeal to professionals in engineering and science, such as practicing engineers who want to see how numerical linear algebra problems can be solved using a programming language such as MATLAB, MAPLE, or Mathematica.
Spaces of homogeneous type were introduced as a generalization to the Euclidean space and serve as a suffi cient setting in which one can generalize the classical isotropic Harmonic analysis and function space theory. This setting is sometimes too general, and the theory is limited. Here, we present a set of fl exible ellipsoid covers of n that replace the Euclidean balls and support a generalization of the theory with fewer limitations.
This book is devoted to the structure of the absolute Galois groups of certain algebraic extensions of the field of rational numbers. Its main result, a theorem proved by the authors and Florian Pop in 2012, describes the absolute Galois group of distinguished semi-local algebraic (and other) extensions of the rational numbers as free products of the free profinite group on countably many generators and local Galois groups. This is an instance of a positive answer to the generalized inverse problem of Galois theory. Adopting both an arithmetic and probabilistic approach, the book carefully sets out the preliminary material needed to prove the main theorem and its supporting results. In addition, it includes a description of Melnikov's construction of free products of profinite groups and, for the first time in book form, an account of a generalization of the theory of free products of profinite groups and their subgroups. The book will be of interest to researchers in field arithmetic, Galois theory and profinite groups.
This book presents the latest findings on statistical inference in multivariate, multilinear and mixed linear models, providing a holistic presentation of the subject. It contains pioneering and carefully selected review contributions by experts in the field and guides the reader through topics related to estimation and testing of multivariate and mixed linear model parameters. Starting with the theory of multivariate distributions, covering identification and testing of covariance structures and means under various multivariate models, it goes on to discuss estimation in mixed linear models and their transformations. The results presented originate from the work of the research group Multivariate and Mixed Linear Models and their meetings held at the Mathematical Research and Conference Center in Bedlewo, Poland, over the last 10 years. Featuring an extensive bibliography of related publications, the book is intended for PhD students and researchers in modern statistical science who are interested in multivariate and mixed linear models.
This is the fourth in a series of proceedings of the Combinatorial and Additive Number Theory (CANT) conferences, based on talks from the 2019 and 2020 workshops at the City University of New York. The latter was held online due to the COVID-19 pandemic, and featured speakers from North and South America, Europe, and Asia. The 2020 Zoom conference was the largest CANT conference in terms of the number of both lectures and participants. These proceedings contain 25 peer-reviewed and edited papers on current topics in number theory. Held every year since 2003 at the CUNY Graduate Center, the workshop surveys state-of-the-art open problems in combinatorial and additive number theory and related parts of mathematics. Topics featured in this volume include sumsets, zero-sum sequences, minimal complements, analytic and prime number theory, Hausdorff dimension, combinatorial and discrete geometry, and Ramsey theory. This selection of articles will be of relevance to both researchers and graduate students interested in current progress in number theory.
Optimization is the act of obtaining the "best" result under given circumstances. In design, construction, and maintenance of any engineering system, engineers must make technological and managerial decisions to minimize either the effort or cost required or to maximize benefits. There is no single method available for solving all optimization problems efficiently. Several optimization methods have been developed for different types of problems. The optimum-seeking methods are mathematical programming techniques (specifically, nonlinear programming techniques). Nonlinear Optimization: Models and Applications presents the concepts in several ways to foster understanding. Geometric interpretation: is used to re-enforce the concepts and to foster understanding of the mathematical procedures. The student sees that many problems can be analyzed, and approximate solutions found before analytical solutions techniques are applied. Numerical approximations: early on, the student is exposed to numerical techniques. These numerical procedures are algorithmic and iterative. Worksheets are provided in Excel, MATLAB(R), and Maple(TM) to facilitate the procedure. Algorithms: all algorithms are provided with a step-by-step format. Examples follow the summary to illustrate its use and application. Nonlinear Optimization: Models and Applications: Emphasizes process and interpretation throughout Presents a general classification of optimization problems Addresses situations that lead to models illustrating many types of optimization problems Emphasizes model formulations Addresses a special class of problems that can be solved using only elementary calculus Emphasizes model solution and model sensitivity analysis About the author: William P. Fox is an emeritus professor in the Department of Defense Analysis at the Naval Postgraduate School. He received his Ph.D. at Clemson University and has taught at the United States Military Academy and at Francis Marion University where he was the chair of mathematics. He has written many publications, including over 20 books and over 150 journal articles. Currently, he is an adjunct professor in the Department of Mathematics at the College of William and Mary. He is the emeritus director of both the High School Mathematical Contest in Modeling and the Mathematical Contest in Modeling.
This book is about Lie group analysis of differential equations for physical and engineering problems. The topics include: -- Approximate symmetry in nonlinear physical problems -- Complex methods for Lie symmetry analysis -- Lie group classification, Symmetry analysis, and conservation laws -- Conservative difference schemes -- Hamiltonian structure and conservation laws of three-dimensional linear elasticity -- Involutive systems of partial differential equations This collection of works is written in memory of Professor Nail H. Ibragimov (1939-2018). It could be used as a reference book in differential equations in mathematics, mechanical, and electrical engineering.
Noncommutative geometry studies an interplay between spatial forms and algebras with non-commutative multiplication. This book covers the key concepts of noncommutative geometry and its applications in topology, algebraic geometry, and number theory. Our presentation is accessible to the graduate students as well as nonexperts in the field. The second edition includes two new chapters on arithmetic topology and quantum arithmetic.
This book presents material in two parts. Part one provides an introduction to crossed modules of groups, Lie algebras and associative algebras with fully written out proofs and is suitable for graduate students interested in homological algebra. In part two, more advanced and less standard topics such as crossed modules of Hopf algebra, Lie groups, and racks are discussed as well as recent developments and research on crossed modules.
This book includes discussions related to solutions of such tasks as: probabilistic description of the investment function; recovering the income function from GDP estimates; development of models for the economic cycles; selecting the time interval of pseudo-stationarity of cycles; estimating characteristics/parameters of cycle models; analysis of accuracy of model factors. All of the above constitute the general principles of a theory explaining the phenomenon of economic cycles and provide mathematical tools for their quantitative description. The introduced theory is applicable to macroeconomic analyses as well as econometric estimations of economic cycles.
This book provides a broad, interdisciplinary overview of non-Archimedean analysis and its applications. Featuring new techniques developed by leading experts in the field, it highlights the relevance and depth of this important area of mathematics, in particular its expanding reach into the physical, biological, social, and computational sciences as well as engineering and technology. In the last forty years the connections between non-Archimedean mathematics and disciplines such as physics, biology, economics and engineering, have received considerable attention. Ultrametric spaces appear naturally in models where hierarchy plays a central role - a phenomenon known as ultrametricity. In the 80s, the idea of using ultrametric spaces to describe the states of complex systems, with a natural hierarchical structure, emerged in the works of Fraunfelder, Parisi, Stein and others. A central paradigm in the physics of certain complex systems - for instance, proteins - asserts that the dynamics of such a system can be modeled as a random walk on the energy landscape of the system. To construct mathematical models, the energy landscape is approximated by an ultrametric space (a finite rooted tree), and then the dynamics of the system is modeled as a random walk on the leaves of a finite tree. In the same decade, Volovich proposed using ultrametric spaces in physical models dealing with very short distances. This conjecture has led to a large body of research in quantum field theory and string theory. In economics, the non-Archimedean utility theory uses probability measures with values in ordered non-Archimedean fields. Ultrametric spaces are also vital in classification and clustering techniques. Currently, researchers are actively investigating the following areas: p-adic dynamical systems, p-adic techniques in cryptography, p-adic reaction-diffusion equations and biological models, p-adic models in geophysics, stochastic processes in ultrametric spaces, applications of ultrametric spaces in data processing, and more. This contributed volume gathers the latest theoretical developments as well as state-of-the art applications of non-Archimedean analysis. It covers non-Archimedean and non-commutative geometry, renormalization, p-adic quantum field theory and p-adic quantum mechanics, as well as p-adic string theory and p-adic dynamics. Further topics include ultrametric bioinformation, cryptography and bioinformatics in p-adic settings, non-Archimedean spacetime, gravity and cosmology, p-adic methods in spin glasses, and non-Archimedean analysis of mental spaces. By doing so, it highlights new avenues of research in the mathematical sciences, biosciences and computational sciences.
|
![]() ![]() You may like...
Groups - Korea 98 - Proceedings of the…
Young Gheel Baik, Johnson David L. Johnson, …
Hardcover
R6,064
Discovery Miles 60 640
Multiscale Modeling - A Bayesian…
Marco A. R. Ferreira, Herbert K.H. Lee
Hardcover
R2,894
Discovery Miles 28 940
Theory of Group Representations and…
A.O. Barut, Ryszard Raczka, …
Hardcover
R2,609
Discovery Miles 26 090
Learning React - Modern Patterns for…
Eve Porcello, Alex Banks
Paperback
Valuepack: Design Patterns:Elements of…
Erich Gamma, Richard Helm, …
Hardcover
R2,021
Discovery Miles 20 210
|