![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra
This book, an outgrowth of the author¿s lectures at the University of California at Berkeley, is intended as a textbook for a one-semester course in basic ring theory. The material covered includes the Wedderburn-Artin theory of semisimple rings, Jacobson¿s theory of the radical, representation theory of groups and algebras, prime and semiprime rings, local and semilocal rings, perfect and semiperfect rings, etc. By aiming the level of writing at the novice rather than the connoisseur and by stressing the role of examples and motivation, the author has produced a text that is suitable not only for use in a graduate course, but also for self-study in the subject by interested graduate students. More than 400 exercises testing the understanding of the general theory in the text are included in this new edition.
This book concentrates on the topic of evaluation of Jacobians in some specific linear as well as nonlinear matrix transformations, in the real and complex cases, which are widely applied in the statistical, physical, engineering, biological and social sciences. It aims to develop some techniques systematically so that anyone with a little exposure to multivariable calculus can easily follow the steps and understand the various methods by which the Jacobians in complicated matrix transformations are evaluated. The material is developed slowly, with lots of worked examples, aimed at self-study. Some exercises are also given, at the end of each section.The book is a valuable reference for statisticians, engineers, physicists, econometricians, applied mathematicians and people working in many other areas. It can be used for a one-semester graduate level course on Jacobians and functions of matrix argument.
The Kronecker product of matrices plays a central role in mathematics and in applications found in engineering and theoretical physics. These applications are signal processing, statistical physics, quantum groups and quantum computers. This book provides a comprehensive introduction to the Kronecker product of matrices together with its software implementation in C++ using an object-oriented design.
A completely reworked new edition of this superb textbook. This key work is geared to the needs of the graduate student. It covers, with proofs, the usual major branches of groups, rings, fields, and modules. Its inclusive approach means that all of the necessary areas are explored, while the level of detail is ideal for the intended readership. The text tries to promote the conceptual understanding of algebra as a whole, doing so with a masterful grasp of methodology. Despite the abstract subject matter, the author includes a careful selection of important examples, together with a detailed elaboration of the more sophisticated, abstract theories.
The book deals with algorithmic problems related to binary quadratic forms. It uniquely focuses on the algorithmic aspects of the theory. The book introduces the reader to important areas of number theory such as diophantine equations, reduction theory of quadratic forms, geometry of numbers and algebraic number theory. The book explains applications to cryptography and requires only basic mathematical knowledge. The author is a world leader in number theory.
In his 1974 seminal paper 'Elliptic modules', V G Drinfeld introduced objects into the arithmetic geometry of global function fields which are nowadays known as 'Drinfeld Modules'. They have many beautiful analogies with elliptic curves and abelian varieties. They study of their moduli spaces leads amongst others to explicit class field theory, Jacquet-Langlands theory, and a proof of the Shimura-Taniyama-Weil conjecture for global function fields.This book constitutes a carefully written instructional course of 12 lectures on these subjects, including many recent novel insights and examples. The instructional part is complemented by research papers centering around class field theory, modular forms and Heegner points in the theory of global function fields.The book will be indispensable for everyone who wants a clear view of Drinfeld's original work, and wants to be informed about the present state of research in the theory of arithmetic geometry over function fields.
The theory of transcendental numbers is closely related to the study of diophantine approximation. This book deals with values of the usual exponential function ez: a central open problem is the conjecture on algebraic independence of logarithms of algebraic numbers. It includes proofs of the main basic results (theorems of Hermite-Lindemann, Gelfond-Schneider, 6 exponentials theorem), an introduction to height functions and Lehmer's problem, several proofs of Baker's theorem as well as explicit measures of linear independence of logarithms. An original feature is the systematic use, in proofs, of Laurent's interpolation determinants. The most general result is the so-called Theorem of the Linear Subgroup, an effective version of which is also included. It yields new results of simultaneous approximation and of algebraic independence. Two chapters written by D. Roy provide complete and at the same time simplified proofs of zero estimates (due to Philippon) on linear algebraic groups.
The Schur complement plays an important role in matrix analysis, statistics, numerical analysis, and many other areas of mathematics and its applications. This book describes the Schur complement as a rich and basic tool in mathematical research and applications and discusses many significant results that illustrate its power and fertility. The eight chapters of the book cover themes and variations on the Schur complement, including its historical development, basic properties, eigenvalue and singular value inequalities, matrix inequalities in both finite and infinite dimensional settings, closure properties, and applications in statistics, probability, and numerical analysis. Although the book is primarily intended to serve as a research reference, it will also be useful for graduate and advanced undergraduate courses in mathematics, applied mathematics, and statistics. The contributing authors' exposition makes most of the material accessible to readers with a sound foundation in linear algebra.
Spectral theoryis an important part of functional analysis.It has numerousapp- cations in many parts of mathematics and physics including matrix theory, fu- tion theory, complex analysis, di?erential and integral equations, control theory and quantum physics. In recent years, spectral theory has witnessed an explosive development. There are many types of spectra, both for one or several commuting operators, with important applications, for example the approximate point spectrum, Taylor spectrum, local spectrum, essential spectrum, etc. The present monograph is an attempt to organize the available material most of which exists only in the form of research papers scattered throughout the literature. The aim is to present a survey of results concerning various types of spectra in a uni?ed, axiomatic way. The central unifying notion is that of a regularity, which in a Banach algebra isasubsetofelementsthatareconsideredtobe nice .AregularityRinaBanach algebraA de?nes the corresponding spectrum ? (a)={ C: a / ? R} in R the same wayas the ordinaryspectrum is de?ned by means of invertible elements, ?(a)={ C: a / ? Inv(A)}. Axioms of a regularity are chosen in such a way that there are many natural interesting classes satisfying them. At the same time they are strong enough for non-trivial consequences, for example the spectral mapping theorem. Spectra ofn-tuples ofcommuting elements ofa Banachalgebraaredescribed similarly by means of a notion of joint regularity. This notion is closely related to ? the axiomatic spectral theory of Zelazko and S lodkowski."
A systematic survey of all the basic results on the theory of discrete subgroups of Lie groups, presented in a convenient form for users. The book makes the theory accessible to a wide audience, and will be a standard reference for many years to come.
In the past decade there has been an extemely rapid growth in the interest and development of quantum group theory.This book provides students and researchers with a practical introduction to the principal ideas of quantum groups theory and its applications to quantum mechanical and modern field theory problems. It begins with a review of, and introduction to, the mathematical aspects of quantum deformation of classical groups, Lie algebras and related objects (algebras of functions on spaces, differential and integral calculi). In the subsequent chapters the richness of mathematical structure and power of the quantum deformation methods and non-commutative geometry is illustrated on the different examples starting from the simplest quantum mechanical system - harmonic oscillator and ending with actual problems of modern field theory, such as the attempts to construct lattice-like regularization consistent with space-time Poincare symmetry and to incorporate Higgs fields in the general geometrical frame of gauge theories. Graduate students and researchers studying the problems of quantum field theory, particle physics and mathematical aspects of quantum symmetries will find the book of interest.
This monograph surveys the role of some associative and non-associative algebras, remarkable by their ubiquitous appearance in contemporary theoretical physics, particularly in particle physics. It concerns the interplay between division algebras, specifically quaternions and octonions, between Jordan and related algebras on the one hand, and unified theories of the basic interactions on the other. Selected applications of these algebraic structures are discussed: quaternion analyticity of Yang-Mills instantons, octonionic aspects of exceptional broken gauge, supergravity theories, division algebras in anyonic phenomena and in theories of extended objects in critical dimensions. The topics presented deal primarily with original contributions by the authors.
Part I of this book is a short review of the classical part of representation theory. The main chapters of representation theory are discussed: representations of finite and compact groups, finite- and infinite-dimensional representations of Lie groups. It is a typical feature of this survey that the structure of the theory is carefully exposed - the reader can easily see the essence of the theory without being overwhelmed by details. The final chapter is devoted to the method of orbits for different types of groups. Part II deals with representation of Virasoro and Kac-Moody algebra. The second part of the book deals with representations of Virasoro and Kac-Moody algebra. The wealth of recent results on representations of infinite-dimensional groups is presented.
In 2006 a special semester on Gr] obner bases and related methods was or- nized by RICAM and RISC, directed by Bruno Buchberger and Heinz Engl. The main focus of the semester were the development of the formal theory of Gr] obner bases (brie?y GB), the e?cient implementation of all algorithms related to this theory, and the promotion of recent and new applications of GB. The workshop D1 "Gr] obner bases in cryptography, coding theory and - gebraic combinatorics," Linz, May 1-6, 2006 (chairmen M. Klin, L. Perret, M. Sala) was one of the main ingredients of the semester. The last two days of this workshop, devoted to combinatorics, made it possible to bring together experts in algorithmic problems related to coherent con?gurations and as- ciation schemes with a community of people working in the area of GB. Each side was interested in understanding the computational problems and current algorithmicpossibilitiesoftheother, withaparticularobjectiveofintroducing the practical use of GB in algebraic combinatorics. Materials (mainly slides of lectures and posters) available from the site http: //www.ricam.oeaw.ac.at/specsem/srs/groeb/schedule D1.htmlprovidea helpful and vivid picture of the successful exchange of scienti?c information during the workshop D1. Asafollow-uptothespecialsemester,10volumesofproceedingsarebeing published by di?erent publishers. The current collection of papers re?ects diverse investigations in the area of algebraic combinatorics (with or without explicit use of GB), but with a de?nite emphasis on algorithmic approaches."
The environmental and chemical sciences are ever more reliant on
computers. This dependence needs formalization, and the theory of
algebraic relations is one possibility. Under algebraic relations,
"order" turns out to be of special interest in many applicational
fields. Internationally renowned authors explain the theory and
practice of order relations in such a way, that no specific
mathematical skill is needed to understand the advantages of this
algebraization. As the order relations are very general and simple,
they can be used quite universally. For example, the structure of
chemicals and their properties; evaluation of waste disposal sites,
decision support for river management; and the way to measure
biodiversity are examples of the broadness of the concept.
There is no branch of mathematics, however abstract, which may not some day be applied to phenomena of the real world. - Nikolai Ivanovich Lobatchevsky This book is an extensively-revised and expanded version of "The Theory of Semirings, with Applicationsin Mathematics and Theoretical Computer Science" [Golan, 1992], first published by Longman. When that book went out of print, it became clear - in light of the significant advances in semiring theory over the past years and its new important applications in such areas as idempotent analysis and the theory of discrete-event dynamical systems - that a second edition incorporating minor changes would not be sufficient and that a major revision of the book was in order. Therefore, though the structure of the first "dition was preserved, the text was extensively rewritten and substantially expanded. In particular, references to many interesting and applications of semiring theory, developed in the past few years, had to be added. Unfortunately, I find that it is best not to go into these applications in detail, for that would entail long digressions into various domains of pure and applied mathematics which would only detract from the unity of the volume and increase its length considerably. However, I have tried to provide an extensive collection of examples to arouse the reader's interest in applications, as well as sufficient citations to allow the interested reader to locate them. For the reader's convenience, an index to these citations is given at the end of the book .
The approximation of a continuous function by either an algebraic polynomial, a trigonometric polynomial, or a spline, is an important issue in application areas like computer-aided geometric design and signal analysis. This book is an introduction to the mathematical analysis of such approximation, and, with the prerequisites of only calculus and linear algebra, the material is targeted at senior undergraduate level, with a treatment that is both rigorous and self-contained. The topics include polynomial interpolation; Bernstein polynomials and the Weierstrass theorem; best approximations in the general setting of normed linear spaces and inner product spaces; best uniform polynomial approximation; orthogonal polynomials; Newton-Cotes, Gauss and Clenshaw-Curtis quadrature; the Euler-Maclaurin formula; approximation of periodic functions; the uniform convergence of Fourier series; spline approximation, with an extensive treatment of local spline interpolation, and its application in quadrature. Exercises are provided at the end of each chapter
a set of three independent, self-contained volumes, features surveys and original work by well-established researchers in key areas of semisimple Lie groups. A wide range of topics is covered, including unitary representation theory and harmonic analysis. Lie Theory: Lie Algebras and Representations contains J. C. Jantzen's Nilpotent Orbits in Representation Theory, and K.-H. Neeb's Infinite Dimensional Groups and their Representations. Both papers are comprehensive treatments of the relevant geometry of orbits in Lie algebras, or their duals, and the correspondence to representations. Ideal for graduate students and researchers, each volume of Lie Theory provides a broad, clearly focused examination of semisimple Lie groups and their integral importance to research in many branches of mathematics.
The book is the first book on complex matrix equations including the conjugate of unknown matrices. The study of these conjugate matrix equations is motivated by the investigations on stabilization and model reference tracking control for discrete-time antilinear systems, which are a particular kind of complex system with structure constraints. It proposes useful approaches to obtain iterative solutions or explicit solutions for several types of complex conjugate matrix equation. It observes that there are some significant differences between the real/complex matrix equations and the complex conjugate matrix equations. For example, the solvability of a real Sylvester matrix equation can be characterized by matrix similarity; however, the solvability of the con-Sylvester matrix equation in complex conjugate form is related to the concept of con-similarity. In addition, the new concept of conjugate product for complex polynomial matrices is also proposed in order to establish a unified approach for solving a type of complex matrix equation.
Reflection groups and their invariant theory provide the main themes of this book and the first two parts focus on these topics. The first 13 chapters deal with reflection groups (Coxeter groups and Weyl groups) in Euclidean Space while the next thirteen chapters study the invariant theory of pseudo-reflection groups. The third part of the book studies conjugacy classes of the elements in reflection and pseudo-reflection groups. The book has evolved from various graduate courses given by the author over the past 10 years. It is intended to be a graduate text, accessible to students with a basic background in algebra.
The international conference on which the book is based brought together many of the world's leading experts, with particular effort on the interaction between established scientists and emerging young promising researchers, as well as on the interaction of pure and applied mathematics. All material has been rigorously refereed. The contributions contain much material developed after the conference, continuing research and incorporating additional new results and improvements. In addition, some up-to-date surveys are included.
Devoted to the theory of Lie algebras and algebraic groups, this book includes a large amount of commutative algebra and algebraic geometry so as to make it as self-contained as possible. The aim of the book is to assemble in a single volume the algebraic aspects of the theory, so as to present the foundations of the theory in characteristic zero. Detailed proofs are included, and some recent results are discussed in the final chapters.
A recurring theme in a traditional introductory graduate algebra course is the existence and consequences of relationships between different algebraic structures. This is also the theme of this book, an exposition of connections between representations of finite partially ordered sets and abelian groups. Emphasis is placed throughout on classification, a description of the objects up to isomorphism, and computation of representation type, a measure of when classification is feasible. David M. Arnold is the Ralph and Jean Storm Professor of Mathematics at Baylor University. He is the author of "Finite Rank Torsion Free Abelian Groups and Rings" published in the Springer-Verlag Lecture Notes in Mathematics series, a co-editor for two volumes of conference proceedings, and the author of numerous articles in mathematical research journals. His research interests are in abelian group theory and related topics, such as representations of partially ordered sets and modules over discrete valuation rings, subrings of algebraic number fields, and pullback rings. He received his Ph. D. from the University of Illinois, Urbana and was a member of the faculty at New Mexico State University for many years.
This text brings the reader to the frontiers of current research in topological rings. The exercises illustrate many results and theorems while a comprehensive bibliography is also included. The book is aimed at those readers acquainted with some very basic point-set topology and algebra, as normally presented in semester courses at the beginning graduate level or even at the advanced undergraduate level. Familiarity with Hausdorff, metric, compact and locally compact spaces and basic properties of continuous functions, also with groups, rings, fields, vector spaces and modules, and with Zorn's Lemma, is also expected. |
You may like...
Validated Designs for Object-oriented…
John Fitzgerald, Peter Gorm Larsen, …
Hardcover
R2,137
Discovery Miles 21 370
|