![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra
This introduction to cryptography employs a programming-oriented approach to study the most important cryptographic schemes in current use and the main cryptanalytic attacks against them. Discussion of the theoretical aspects, emphasizing precise security definitions based on methodological tools such as complexity and randomness, and of the mathematical aspects, with emphasis on number-theoretic algorithms and their applications to cryptography and cryptanalysis, is integrated with the programming approach, thus providing implementations of the algorithms and schemes as well as examples of realistic size. A distinctive feature of the author's approach is the use of Maple as a programming environment in which not just the cryptographic primitives but also the most important cryptographic schemes are implemented following the recommendations of standards bodies such as NIST, with many of the known cryptanalytic attacks implemented as well. The purpose of the Maple implementations is to let the reader experiment and learn, and for this reason the author includes numerous examples. The book discusses important recent subjects such as homomorphic encryption, identity-based cryptography and elliptic curve cryptography. The algorithms and schemes which are treated in detail and implemented in Maple include AES and modes of operation, CMAC, GCM/GMAC, SHA-256, HMAC, RSA, Rabin, Elgamal, Paillier, Cocks IBE, DSA and ECDSA. In addition, some recently introduced schemes enjoying strong security properties, such as RSA-OAEP, Rabin-SAEP, Cramer--Shoup, and PSS, are also discussed and implemented. On the cryptanalysis side, Maple implementations and examples are used to discuss many important algorithms, including birthday and man-in-the-middle attacks, integer factorization algorithms such as Pollard's rho and the quadratic sieve, and discrete log algorithms such as baby-step giant-step, Pollard's rho, Pohlig--Hellman and the index calculus method. This textbook is suitable for advanced undergraduate and graduate students of computer science, engineering and mathematics, satisfying the requirements of various types of courses: a basic introductory course; a theoretically oriented course whose focus is on the precise definition of security concepts and on cryptographic schemes with reductionist security proofs; a practice-oriented course requiring little mathematical background and with an emphasis on applications; or a mathematically advanced course addressed to students with a stronger mathematical background. The main prerequisite is a basic knowledge of linear algebra and elementary calculus, and while some knowledge of probability and abstract algebra would be helpful, it is not essential because the book includes the necessary background from these subjects and, furthermore, explores the number-theoretic material in detail. The book is also a comprehensive reference and is suitable for self-study by practitioners and programmers."
This volume collects contributions by leading experts in the area of commutative algebra related to the INdAM meeting "Homological and Computational Methods in Commutative Algebra" held in Cortona (Italy) from May 30 to June 3, 2016 . The conference and this volume are dedicated to Winfried Bruns on the occasion of his 70th birthday. In particular, the topics of this book strongly reflect the variety of Winfried Bruns' research interests and his great impact on commutative algebra as well as its applications to related fields. The authors discuss recent and relevant developments in algebraic geometry, commutative algebra, computational algebra, discrete geometry and homological algebra. The book offers a unique resource, both for young and more experienced researchers seeking comprehensive overviews and extensive bibliographic references.
By studying applications in radar, telecommunications and digital image restoration, this monograph discusses signal processing techniques based on bispectral methods. Improved robustness against different forms of noise as well as preservation of phase information render this method a valuable alternative to common power-spectrum analysis used in radar object recognition, digital wireless communications, and jitter removal in images.
Analytical solutions to the orbital motion of celestial objects have been nowadays mostly replaced by numerical solutions, but they are still irreplaceable whenever speed is to be preferred to accuracy, or to simplify a dynamical model. In this book, the most common orbital perturbations problems are discussed according to the Lie transforms method, which is the de facto standard in analytical orbital motion calculations.
This book provides an up-to-date introduction to information theory. In addition to the classical topics discussed, it provides the first comprehensive treatment of the theory of I-Measure, network coding theory, Shannon and non-Shannon type information inequalities, and a relation between entropy and group theory. ITIP, a software package for proving information inequalities, is also included. With a large number of examples, illustrations, and original problems, this book is excellent as a textbook or reference book for a senior or graduate level course on the subject, as well as a reference for researchers in related fields.
This book deals mainly with modelling systems that change with time. The evolution equations that it describes can be found in a number of application areas, such as kinetics, fragmentation theory and mathematical biology. This will be the first self-contained account of the area.
This book covers the theory and applications of the Wigner phase space distribution function and its symmetry properties. The book explains why the phase space picture of quantum mechanics is needed, in addition to the conventional Schroedinger or Heisenberg picture. It is shown that the uncertainty relation can be represented more accurately in this picture. In addition, the phase space picture is shown to be the natural representation of quantum mechanics for modern optics and relativistic quantum mechanics of extended objects.
This collection of survey lectures in mathematics traces the career of Beno Eckmann, whose work ranges across a broad spectrum of mathematical concepts from topology through homological algebra to group theory. One of our most influential living mathematicians, Eckmann has been associated for nearly his entire professional life with the Swiss Federal Technical University (ETH) at Zurich, as student, lecturer, professor, and professor emeritus.
This volume contains seventeen of the best papers delivered at the SIGMAP Workshop 2014, representing the most recent advances in the field of symmetries of discrete objects and structures, with a particular emphasis on connections between maps, Riemann surfaces and dessins d'enfant.Providing the global community of researchers in the field with the opportunity to gather, converse and present their newest findings and advances, the Symmetries In Graphs, Maps, and Polytopes Workshop 2014 was the fifth in a series of workshops. The initial workshop, organized by Steve Wilson in Flagstaff, Arizona, in 1998, was followed in 2002 and 2006 by two meetings held in Aveiro, Portugal, organized by Antonio Breda d'Azevedo, and a fourth workshop held in Oaxaca, Mexico, organized by Isabel Hubard in 2010.This book should appeal to both specialists and those seeking a broad overview of what is happening in the area of symmetries of discrete objects and structures.iv>
This book is composed of three survey lecture courses and some twenty invited research papers presented to WOAT 2006 - the International Summer School and Workshop on Operator Algebras, Operator Theory and Applications, which was held at Lisbon in September 2006. The volume reflects recent developments in the area of operator algebras and their interaction with research fields in complex analysis and operator theory. The lecture courses contain: an introduction to two classes of non-selfadjoint operator algebras, the generalized analytic Toeplitz algebras associated with the Fock space of a graph and subalgebras of graph C*-algebras; three topics on numerical functional analysis that are the cornerstones in asymptotic spectral theory: stability, fractality and Fredholmness; a survey concerning Hilbert spaces of holomorphic functions on Hermitian symmetric domains of arbitrary rank and dimension, in relation to operator theory, harmonic analysis and quantization.
Geometric algebra is still treated as an obscure branch of algebra and most books have been written by competent mathematicians in a very abstract style. This restricts the readership of such books especially by programmers working in computer graphics, who simply want guidance on algorithm design. Geometric algebra provides a unified algebraic system for solving a wide variety of geometric problems. John Vince reveals the beauty of this algebraic framework and communicates to the reader new and unusual mathematical concepts using colour illustrations, tabulations, and easy-to-follow algebraic proofs. The book includes many worked examples to show how the algebra works in practice and is essential reading for anyone involved in designing 3D geometric algorithms.
This volume contains selected papers authored by speakers and participants of the 2013 Arbeitstagung, held at the Max Planck Institute for Mathematics in Bonn, Germany, from May 22-28. The 2013 meeting (and this resulting proceedings) was dedicated to the memory of Friedrich Hirzebruch, who passed away on May 27, 2012. Hirzebruch organized the first Arbeitstagung in 1957 with a unique concept that would become its most distinctive feature: the program was not determined beforehand by the organizers, but during the meeting by all participants in an open discussion. This ensured that the talks would be on the latest developments in mathematics and that many important results were presented at the conference for the first time. Written by leading mathematicians, the papers in this volume cover various topics from algebraic geometry, topology, analysis, operator theory, and representation theory and display the breadth and depth of pure mathematics that has always been characteristic of the Arbeitstagung.
Galois connections provide the order- or structure-preserving passage between two worlds of our imagination - and thus are inherent in hu man thinking wherever logical or mathematical reasoning about cer tain hierarchical structures is involved. Order-theoretically, a Galois connection is given simply by two opposite order-inverting (or order preserving) maps whose composition yields two closure operations (or one closure and one kernel operation in the order-preserving case). Thus, the "hierarchies" in the two opposite worlds are reversed or transported when passing to the other world, and going forth and back becomes a stationary process when iterated. The advantage of such an "adjoint situation" is that information about objects and relationships in one of the two worlds may be used to gain new information about the other world, and vice versa. In classical Galois theory, for instance, properties of permutation groups are used to study field extensions. Or, in algebraic geometry, a good knowledge of polynomial rings gives insight into the structure of curves, surfaces and other algebraic vari eties, and conversely. Moreover, restriction to the "Galois-closed" or "Galois-open" objects (the fixed points of the composite maps) leads to a precise "duality between two maximal subworlds.""
This textbook introduces students of economics to the fundamental notions and instruments in linear algebra. Linearity is used as a first approximation to many problems that are studied in different branches of science, including economics and other social sciences. Linear algebra is also the most suitable to teach students what proofs are and how to prove a statement. The proofs that are given in the text are relatively easy to understand and also endow the student with different ways of thinking in making proofs. Theorems for which no proofs are given in the book are illustrated via figures and examples. All notions are illustrated appealing to geometric intuition. The book provides a variety of economic examples using linear algebraic tools. It mainly addresses students in economics who need to build up skills in understanding mathematical reasoning. Students in mathematics and informatics may also be interested in learning about the use of mathematics in economics.
The book illustrates the theoretical results of fractional derivatives via applications in signals and systems, covering continuous and discrete derivatives, and the corresponding linear systems. Both time and frequency analysis are presented. Some advanced topics are included like derivatives of stochastic processes. It is an essential reference for researchers in mathematics, physics, and engineering.
Palmprint Authentication is the first book to provide a comprehensive introduction to palmprint technologies. It reveals automatic biometric techniques for personal identification using palmprint, from the approach based on offline palmprint images, to the current state-of-the-art algorithm using online palmprint images. Palmprint Authentication provides the reader with a basic concept of Palmprint Authentication. It also includes an in-depth discussion of Palmprint Authentication technologies, a detailed description of Palmprint Authentication systems, and an up-to-date coverage of how these issues are developed. This book is suitable for different levels of readers: those who want to learn more about palmprint technology, and those who wish to understand, participate, and/or develop a palmprint authentication system. Palmprint Authentication is effectively a handbook for biometric research and development. Graduate students and researchers in computer science, electrical engineering, systems science, and information technology will all find it uniquely useful, not only as a reference book, but also as a text book. Researchers and practitioners in industry, and R&D laboratories working in the fields of security system design, biometrics, immigration, law enforcement, control, and pattern recognition will also benefit from this volume.
This book began life as a set of notes that I developed for a course at the University of Washington entitled Introduction to Modern Algebra for Tea- ers. Originally conceived as a text for future secondary-school mathematics teachers, it has developed into a book that could serve well as a text in an - dergraduatecourseinabstractalgebraoracoursedesignedasanintroduction to higher mathematics. This book di?ers from many undergraduate algebra texts in fundamental ways; the reasons lie in the book's origin and the goals I set for the course. The course is a two-quarter sequence required of students intending to f- ?ll the requirements of the teacher preparation option for our B.A. degree in mathematics, or of the teacher preparation minor. It is required as well of those intending to matriculate in our university's Master's in Teaching p- gram for secondary mathematics teachers. This is the principal course they take involving abstraction and proof, and they come to it with perhaps as little background as a year of calculus and a quarter of linear algebra. The mathematical ability of the students varies widely, as does their level of ma- ematical interest.
This book is an introduction to singularities for graduate students and researchers. Algebraic geometry is said to have originated in the seventeenth century with the famous work Discours de la methode pour bien conduire sa raison, et chercher la verite dans les sciences by Descartes. In that book he introduced coordinates to the study of geometry. After its publication, research on algebraic varieties developed steadily. Many beautiful results emerged in mathematicians' works. First, mostly non-singular varieties were studied. In the past three decades, however, it has become clear that singularities are necessary for us to have a good description of the framework of varieties. For example, it is impossible to formulate minimal model theory for higher-dimensional cases without singularities. A remarkable fact is that the study of singularities is developing and people are beginning to see that singularities are interesting and can be handled by human beings. This book is a handy introduction to singularities for anyone interested in singularities. The focus is on an isolated singularity in an algebraic variety. After preparation of varieties, sheaves, and homological algebra, some known results about 2-dimensional isolated singularities are introduced. Then a classification of higher-dimensional isolated singularities is shown according to plurigenera and the behavior of singularities under a deformation is studied. In the second edition, brief descriptions about recent remarkable developments of the researches are added as the last chapter.
This volume presents an exhaustive treatment of computation and algorithms for finite fields. Topics covered include polynomial factorization, finding irreducible and primitive polynomials, distribution of these primitive polynomials and of primitive points on elliptic curves, constructing bases of various types, and new applications of finite fields to other areas of mathematics. For completeness, also included are two special chapters on some recent advances and applications of the theory of congruences (optimal coefficients, congruential pseudo-random number generators, modular arithmetic etc.), and computational number theory (primality testing, factoring integers, computing in algebraic number theory, etc). The problems considered here have many applications in computer science, coding theory, cryptography, number theory and discrete mathematics. The level of discussion presupposes only a knowledge of the basic facts on finite fields, and the book can be recommended as supplementary graduate text. For researchers and students interested in computational and algorithmic problems in finite fields.
A group of Gerry Schwarz's colleagues and collaborators gathered at the Fields Institute in Toronto for a mathematical festschrift in honor of his 60th birthday. This volume is an outgrowth of that event, covering the wide range of mathematics to which Gerry Schwarz has either made fundamental contributions or stimulated others to pursue. The articles are a sampling of modern day algebraic geometry with associated group actions from its leading experts, with a particular focus on characteristic 0 and modular invariant theory. Contributors: M. Brion A. Broer D. Daigle J. Elmer P. Fleischmann G. Freudenberg D. Greb P. Heinzner A. Helminck B. Kostant H. Kraft R. J. Shank W. Traves N. R. Wallach D. Wehlau
This volume is the result of two international workshops; "Infinite Analysis 11 Frontier of Integrability" held at University of Tokyo, Japan in July 25th to 29th, 2011, and "Symmetries, Integrable Systems and Representations" held at Universite Claude Bernard Lyon 1, France in December 13th to 16th, 2011. Included are research articles based on the talks presented at the workshops, latest results obtained thereafter, and some review articles. The subjects discussed range across diverse areas such as algebraic geometry, combinatorics, differential equations, integrable systems, representation theory, solvable lattice models and special functions. Through these topics, the readerwill find some recent
developments in the field of mathematical physics and their
interactions with several other domains.
The Local Langlands Conjecture for GL(2) contributes an unprecedented text to the so-called Langlands theory. It is an ambitious research program of already 40 years and gives a complete and self-contained proof of the Langlands conjecture in the case n=2. It is aimed at graduate students and at researchers in related fields. It presupposes no special knowledge beyond the beginnings of the representation theory of finite groups and the structure theory of local fields.
This present volume is the Proceedings of the 18th International C- ference on Nearrings and Near?elds held in Hamburg at the Universit] at derBundeswehrHamburgfromJuly27toAugust03,2003. ThisConf- ence was organized by Momme Johs Thomsen and Gerhard Saad from the Universit] at der Bundeswehr Hamburg and by Alexander Kreuzer, Hubert Kiechle and Wen-Ling Huang from the Universit] a ]t Hamburg. It was already the second Conference on Nearrings and Near?elds in Hamburg after the Conference on Nearrings and Near?elds at the same venue from July 30 to August 06, 1995. TheConferencewasattendedby57mathematiciansandmanyacc- panying persons who represented 16 countries from all ?ve continents. The ?rst of these conferences took place 35 years earlier in 1968 at the Mathematische Forschungsinstitut Oberwolfach in the Black Forest inGermany. Thiswasalsothesiteofthesecond, third, ?fthandeleventh conference in 1972, 1976, 1980 and 1989. The other twelve conferences held before the second Hamburg Conference took place in nine di?erent countries. For details about this and, moreover, for a general histo- cal overview of the development of the subject we refer to the article "On the beginnings and developments of near-ring theory" by Gerhard Betsch 3] in the proceedings of the 13th Conference in Fredericton, New Brunswick, Canada. Duringthelast?ftyyearsthetheoryofnearringsandrelatedalgebraic structures like near?elds, nearmodules, nearalgebras and seminearrings has developed into an extensive branch of algebra with its own features."
This volume is a collection of lectures and selected papers by Giorgio Parisi on the subjects of Field Theory (perturbative expansions, nonperturbative phenomena and phase transitions), Disordered Systems (mainly spin glasses) and Computer Simulations (lattice gauge theories).The basic problems discussed in the Field Theory section concern the interplay between perturbation theory and nonperturbative phenomena which are present when one deals with infrared or ultraviolet divergences or with nonconvergent perturbative expansions. The section on Disordered Systems contains a complete discussion about the replica method and its probabilistic interpretation, and also includes a short paper on multifractals. In the Simulations section, there is a series of lectures devoted to the study of quantum chromodynamics and a review paper on simulations in complex systems.The works of Giorgio Parisi have repeatedly displayed a remarkable depth of originality and innovation, and have paved the way for new research in many areas. This personal selection of his lectures and papers, complete with an original introduction by him, undoubtedly serves as a vital reference book for physicists and mathematicians working in these fields.
The book is meant to serve two purposes. The first and more obvious
one is to present state of the art results in algebraic research
into residuated structures related to substructural logics. The
second, less obvious but equally important, is to provide a
reasonably gentle introduction to algebraic logic. At the
beginning, the second objective is predominant. Thus, in the first
few chapters the reader will find a primer of universal algebra for
logicians, a crash course in nonclassical logics for algebraists,
an introduction to residuated structures, an outline of
Gentzen-style calculi as well as some titbits of proof theory - the
celebrated Hauptsatz, or cut elimination theorem, among them. These
lead naturally to a discussion of interconnections between logic
and algebra, where we try to demonstrate how they form two sides of
the same coin. We envisage that the initial chapters could be used
as a textbook for a graduate course, perhaps entitled Algebra and
Substructural Logics. |
![]() ![]() You may like...
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R3,047
Discovery Miles 30 470
Video Workbook with the Math Coach for…
Jamie Blair, John Tobey, …
Paperback
R1,557
Discovery Miles 15 570
|