![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra
Considered a classic by many, A First Course in Abstract Algebra is an in-depth introduction to abstract algebra. Focused on groups, rings and fields, this text gives students a firm foundation for more specialized work by emphasizing an understanding of the nature of algebraic structures.
This book features papers presented during a special session on algebra, functional analysis, complex analysis, and pluripotential theory. Research articles focus on topics such as slow convergence, spectral expansion, holomorphic extension, m-subharmonic functions, pseudo-Galilean group, involutive algebra, Log-integrable measurable functions, Gibbs measures, harmonic and analytic functions, local automorphisms, Lie algebras, and Leibniz algebras. Many of the papers address the theory of harmonic functions, and the book includes a number of extensive survey papers. Graduate and researchers interested in functional analysis, complex analysis, operator algebras and non-associative algebras will find this book relevant to their studies. The special session was part of the second USA-Uzbekistan Conference on Analysis and Mathematical Physics held on August 8-12, 2017 at Urgench State University (Uzbekistan). The conference encouraged communication and future collaboration among U.S. mathematicians and their counterparts in Uzbekistan and other countries. Main themes included algebra and functional analysis, dynamical systems, mathematical physics and partial differential equations, probability theory and mathematical statistics, and pluripotential theory. A number of significant, recently established results were disseminated at the conference's scheduled plenary talks, while invited talks presented a broad spectrum of findings in several sessions. Based on a different session from the conference, Differential Equations and Dynamical Systems is also published in the Springer Proceedings in Mathematics & Statistics Series.
The book covers various topics of computer algebra methods, algorithms and software applied to scientific computing. An important topic presented in the book, which may be of interest to researchers and engineers, is the application of computer algebra methods to the development of new efficient analytic and numerical solvers, both for ordinary and partial differential equations. A specific feature of the book is an intense use of advanced software systems such as Mathematica, Maple etc. for the solution of problems as outlined above and for the industrial application of computer algebra for simulation. The book will be useful for researchers and engineers who apply advanced computer algebra methods for the solution of their problems.
Over the last decade, Computational Fluid Dynamics (CFD) has become a - ture technology for the development of new products in aeronautical industry. Aerodynamic design engineers have progressively taken advantage of the pos- bilities o?ered by the numericalsolutionof the Reynolds averagedNavier-Stokes (RANS) equations. Signi?cant improvements in physical modeling and solution algorithms as well as the enormous increase of computer power enable hi- ?delity numerical simulations in all stages of aircraft development. In Germany, the national CFD project MEGAFLOW furthered the dev- opment and availability of RANS solvers for the prediction of complex ?ow problemssigni?cantly. MEGAFLOWwasinitiated by the?rstaviationresearch programoftheFederalGovernmentin1995undertheleadershipoftheDLR(see Kroll, N. , Fassbender, J. K. (Eds). : MEGAFLOW - Numerical Flow Simulation for Aircraft Design; Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Volume 89, Springer, 2005). A network from aircraft industry, DLR and several universities was created with the goal to focus and direct development activities for numerical ?ow simulation towards a common aerodynamic si- lation system providing both a block-structured (FLOWer-Code) and a hybrid (TAU-Code) parallel ? ow prediction capability. Today, both codes have reached a high level of maturity and reliability. They are routinely used at DLR and German aeronautic industry for a wide range of aerodynamic applications. For many universities the MEGAFLOW software represents a platform for the - provementofphysicalmodelsandfortheinvestigationofcomplex?owproblems. The network was established as an e?cient group of very closely co-operating partners with supplementing expertises and experience.
"There are useful discussions of two nonstandard topics which caught my eye, the method of least squares and Markov processes, consistent with the author's concern for the applications and the expected readership, which render the text useful for business, economics and social science students as well as those in physical sciences and engineering ... the book has great value for self study as well as adoption as a classroom text ... By all means adopt Robinson's text and enjoy spreading the gospel of linear algebra." Frank B CannonitoUniversity of California, Irvine "... it is very carefully written, both from the point of view of mathematical content and style, and readability ... It should therefore be very suitable as a course book as well as for self-tuition." Mathematics Abstracts, Germany
This engaging review guide and workbook is the ideal tool for sharpening your Algebra I skills! This review guide and workbook will help you strengthen your Algebra I knowledge, and it will enable you to develop new math skills to excel in your high school classwork and on standardized tests. Clear and concise explanations will walk you step by step through each essential math concept. 500 practical review questions, in turn, provide extensive opportunities for you to practice your new skills. If you are looking for material based on national or state standards, this book is your ideal study tool! Features: *Aligned to national standards, including the Common Core State Standards, as well as the standards of non-Common Core states and Canada*Designed to help you excel in the classroom and on standardized tests*Concise, clear explanations offer step-by-step instruction so you can easily grasp key concepts*You will learn how to apply Algebra I to practical situations*500 review questions provide extensive opportunities for you to practice what you've learned
There are many approaches to noncommutative geometry and its use in physics, the ? operator algebra and C -algebra one, the deformation quantization one, the qu- tum group one, and the matrix algebra/fuzzy geometry one. This volume introduces and develops the subject by presenting in particular the ideas and methods recently pursued by Julius Wess and his group. These methods combine the deformation quantization approach based on the - tion of star product and the deformed (quantum) symmetries methods based on the theory of quantum groups. The merging of these two techniques has proven very fruitful in order to formulate ?eld theories on noncommutative spaces. The aim of the book is to give an introduction to these topics and to prepare the reader to enter the research ?eld himself/herself. This has developed from the constant interest of Prof. W. Beiglboeck, editor of LNP, in this project, and from the authors experience in conferences and schools on the subject, especially from their interaction with students and young researchers. In fact quite a few chapters in the book were written with a double purpose, on the one hand as contributions for school or conference proceedings and on the other handaschaptersforthepresentbook.Thesearenowharmonizedandcomplemented by a couple of contributions that have been written to provide a wider background, to widen the scope, and to underline the power of our methods.
This book presents the various algebraic techniques for solving partial differential equations to yield exact solutions, techniques developed by the author in recent years and with emphasis on physical equations such as: the Maxwell equations, the Dirac equations, the KdV equation, the KP equation, the nonlinear Schrodinger equation, the Davey and Stewartson equations, the Boussinesq equations in geophysics, the Navier-Stokes equations and the boundary layer problems. In order to solve them, I have employed the grading technique, matrix differential operators, stable-range of nonlinear terms, moving frames, asymmetric assumptions, symmetry transformations, linearization techniques and special functions. The book is self-contained and requires only a minimal understanding of calculus and linear algebra, making it accessible to a broad audience in the fields of mathematics, the sciences and engineering. Readers may find the exact solutions and mathematical skills needed in their own research.
Succeed in the course with this Study Guide for BUSINESS MATH, filled with vocabulary, fill-in-the-blank, true/false, multiple choice, and problem solving questions for each chapter.
One of the beautiful results in the representation theory of the finite groups is McKay's theorem on a correspondence between representations of the binary polyhedral group of SU(2) and vertices of an extended simply-laced Dynkin diagram. The Coxeter transformation is the main tool in the proof of the McKay correspondence, and is closely interrelated with the Cartan matrix and Poincare series. The Coxeter functors constructed by Bernstein, Gelfand and Ponomarev plays a distinguished role in the representation theory of quivers. On these pages, the ideas and formulas due to J. N. Bernstein, I. M. Gelfand and V. A. Ponomarev, H.S.M. Coxeter, V. Dlab and C.M. Ringel, V. Kac, J. McKay, T.A. Springer, B. Kostant, P. Slodowy, R. Steinberg, W. Ebeling and several other authors, as well as the author and his colleagues from Subbotin's seminar, are presented in detail. Several proofs seem to be new. "
This unique text is an introduction to harmonic analysis on the simplest symmetric spaces, namely Euclidean space, the sphere, and the Poincare upper half plane. This book is intended for beginning graduate students in mathematics or researchers in physics or engineering. Written with an informal style, the book places an emphasis on motivation, concrete examples, history, and, above all, applications in mathematics, statistics, physics, and engineering. Many corrections and updates have been incorporated in this new edition. Updates include discussions of P. Sarnak and others' work on quantum chaos, the work of T. Sunada, Marie-France Vigneras, Carolyn Gordon, and others on Mark Kac's question "Can you hear the shape of a drum?," A. Lubotzky, R. Phillips and P. Sarnak's examples of Ramanujan graphs, and, finally, the author's comparisons of continuous theory with the finite analogues. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, Poisson's summation formula and applications in crystallography and number theory, applications of spherical harmonic analysis to the hydrogen atom, the Radon transform, non-Euclidean geometry on the Poincare upper half plane H or unit disc and applications to microwave engineering, fundamental domains in H for discrete groups, tessellations of H from such discrete group actions, automorphic forms, and the Selberg trace formula and its applications in spectral theory as well as number theory."
This book begins with the fundamentals of the generalized inverses, then moves to more advanced topics. It presents a theoretical study of the generalization of Cramer's rule, determinant representations of the generalized inverses, reverse order law of the generalized inverses of a matrix product, structures of the generalized inverses of structured matrices, parallel computation of the generalized inverses, perturbation analysis of the generalized inverses, an algorithmic study of the computational methods for the full-rank factorization of a generalized inverse, generalized singular value decomposition, imbedding method, finite method, generalized inverses of polynomial matrices, and generalized inverses of linear operators. This book is intended for researchers, postdocs, and graduate students in the area of the generalized inverses with an undergraduate-level understanding of linear algebra.
This book presents a consistent development of the Kohn-Nirenberg type global quantization theory in the setting of graded nilpotent Lie groups in terms of their representations. It contains a detailed exposition of related background topics on homogeneous Lie groups, nilpotent Lie groups, and the analysis of Rockland operators on graded Lie groups together with their associated Sobolev spaces. For the specific example of the Heisenberg group the theory is illustrated in detail. In addition, the book features a brief account of the corresponding quantization theory in the setting of compact Lie groups. The monograph is the winner of the 2014 Ferran Sunyer i Balaguer Prize.
This book addresses selected topics in the theory of generalized inverses. Following a discussion of the "reverse order law" problem and certain problems involving completions of operator matrices, it subsequently presents a specific approach to solving the problem of the reverse order law for {1} -generalized inverses. Particular emphasis is placed on the existence of Drazin invertible completions of an upper triangular operator matrix; on the invertibility and different types of generalized invertibility of a linear combination of operators on Hilbert spaces and Banach algebra elements; on the problem of finding representations of the Drazin inverse of a 2x2 block matrix; and on selected additive results and algebraic properties for the Drazin inverse. In addition to the clarity of its content, the book discusses the relevant open problems for each topic discussed. Comments on the latest references on generalized inverses are also included. Accordingly, the book will be useful for graduate students, PhD students and researchers, but also for a broader readership interested in these topics.
This book features a selection of articles based on the XXXIV Bialowieza Workshop on Geometric Methods in Physics, 2015. The articles presented are mathematically rigorous, include important physical implications and address the application of geometry in classical and quantum physics. Special attention deserves the session devoted to discussions of Gerard Emch's most important and lasting achievements in mathematical physics. The Bialowieza workshops are among the most important meetings in the field and gather participants from mathematics and physics alike. Despite their long tradition, the Workshops remain at the cutting edge of ongoing research. For the past several years, the Bialowieza Workshop has been followed by a School on Geometry and Physics, where advanced lectures for graduate students and young researchers are presented. The unique atmosphere of the Workshop and School is enhanced by the venue, framed by the natural beauty of the Bialowieza forest in eastern Poland.
This book is the second volume of an intensive "Russian-style" two-year undergraduate course in abstract algebra, and introduces readers to the basic algebraic structures - fields, rings, modules, algebras, groups, and categories - and explains the main principles of and methods for working with them. The course covers substantial areas of advanced combinatorics, geometry, linear and multilinear algebra, representation theory, category theory, commutative algebra, Galois theory, and algebraic geometry - topics that are often overlooked in standard undergraduate courses. This textbook is based on courses the author has conducted at the Independent University of Moscow and at the Faculty of Mathematics in the Higher School of Economics. The main content is complemented by a wealth of exercises for class discussion, some of which include comments and hints, as well as problems for independent study.
This volume is a collection of chapters covering recent advances
in stochastic optimal control theory and algebraic systems theory.
The book will be a useful reference for researchers and graduate
students in systems and control, algebraic systems theory, and
applied mathematics. Requiring only knowledge of
undergraduate-level control and systems theory, the work may be
used as a supplementary textbook in a graduate course on optimal
control or algebraic systems theory.
This volume is a collection of lectures and selected papers by Giorgio Parisi on the subjects of Field Theory (perturbative expansions, nonperturbative phenomena and phase transitions), Disordered Systems (mainly spin glasses) and Computer Simulations (lattice gauge theories).The basic problems discussed in the Field Theory section concern the interplay between perturbation theory and nonperturbative phenomena which are present when one deals with infrared or ultraviolet divergences or with nonconvergent perturbative expansions. The section on Disordered Systems contains a complete discussion about the replica method and its probabilistic interpretation, and also includes a short paper on multifractals. In the Simulations section, there is a series of lectures devoted to the study of quantum chromodynamics and a review paper on simulations in complex systems.The works of Giorgio Parisi have repeatedly displayed a remarkable depth of originality and innovation, and have paved the way for new research in many areas. This personal selection of his lectures and papers, complete with an original introduction by him, undoubtedly serves as a vital reference book for physicists and mathematicians working in these fields.
Identity Based Encryption (IBE) is a type of public key encryption and has been intensely researched in the past decade. Identity-Based Encryption summarizes the available research for IBE and the main ideas that would enable users to pursue further work in this area. This book will also cover a brief background on Elliptic Curves and Pairings, security against chosen Cipher text Attacks, standards and more. Advanced-level students in computer science and mathematics who specialize in cryptology, and the general community of researchers in the area of cryptology and data security will find Identity-Based Encryption a useful book. Practitioners and engineers who work with real-world IBE schemes and need a proper understanding of the basic IBE techniques, will also find this book a valuable asset.
This edited volume features a curated selection of research in algebraic combinatorics that explores the boundaries of current knowledge in the field. Focusing on topics experiencing broad interest and rapid growth, invited contributors offer survey articles on representation theory, symmetric functions, invariant theory, and the combinatorics of Young tableaux. The volume also addresses subjects at the intersection of algebra, combinatorics, and geometry, including the study of polytopes, lattice points, hyperplane arrangements, crystal graphs, and Grassmannians. All surveys are written at an introductory level that emphasizes recent developments and open problems. An interactive tutorial on Schubert Calculus emphasizes the geometric and topological aspects of the topic and is suitable for combinatorialists as well as geometrically minded researchers seeking to gain familiarity with relevant combinatorial tools. Featured authors include prominent women in the field known for their exceptional writing of deep mathematics in an accessible manner. Each article in this volume was reviewed independently by two referees. The volume is suitable for graduate students and researchers interested in algebraic combinatorics.
Thisbookisintendedasanintroductiontoallthe?nitesimplegroups.During themonumentalstruggletoclassifythe?nitesimplegroups(andindeedsince), a huge amount of information about these groups has been accumulated. Conveyingthisinformationtothenextgenerationofstudentsandresearchers, not to mention those who might wish to apply this knowledge, has become a major challenge. With the publication of the two volumes by Aschbacher and Smith [12, 13] in 2004 we can reasonably regard the proof of the Classi?cation Theorem for Finite Simple Groups (usually abbreviated CFSG) as complete. Thus it is timely to attempt an overview of all the (non-abelian) ?nite simple groups in one volume. For expository purposes it is convenient to divide them into four basic types, namely the alternating, classical, exceptional and sporadic groups. The study of alternating groups soon develops into the theory of per- tation groups, which is well served by the classic text of Wielandt [170]and more modern treatments such as the comprehensive introduction by Dixon and Mortimer [53] and more specialised texts such as that of Cameron [19].
The main focus of this thesis is the mathematical structure of Group Field Theories (GFTs) from the point of view of renormalization theory. Such quantum field theories are found in approaches to quantum gravity related, on the one hand, to Loop Quantum Gravity (LQG) and on the other, to matrix- and tensor models. Background material on these topics, including conceptual and technical aspects, are introduced in the first chapters. The work then goes on to explain how the standard tools of Quantum Field Theory can be generalized to GFTs and exploited to study the large cut-off behaviour and renormalization group transformations of the latter. Among the new results derived in this context are a proof of renormalizability of a three-dimensional GFT with gauge group SU(2), which opens the way to applications of the formalism to quantum gravity.
This volume contains the combined Proceedings of the Second International Meeting on Commutative Algebra and Related Areas (SIMCARA) held from July 22-26, 2019, at the Universidade de Sao Paulo, Sao Carlos, Brazil, and the AMS Special Session on Commutative Algebra, held from September 14-15, 2019, at the University of Wisconsin-Madison, Wisconsin. These two meetings celebrated the combined 150th birthday of Roger and Sylvia Wiegand. The Wiegands have been a fixture in the commutative algebra community, as well as the wider mathematical community, for over 40 years. Articles in this volume cover various areas of factorization theory, homological algebra, ideal theory, representation theory, homological rigidity, maximal Cohen-Macaulay modules, and the behavior of prime spectra under completion, as well as some topics in related fields. The volume itself bears evidence that the area of commutative algebra is a vibrant one and highlights the influence of the Wiegands on generations of researchers. It will be useful to researchers and graduate students.
The book offers a new approach to information theory that is more general then the classical approach by Shannon. The classical definition of information is given for an alphabet of symbols or for a set of mutually exclusive propositions (a partition of the probability space ) with corresponding probabilities adding up to 1. The new definition is given for an arbitrary cover of , i.e. for a set of possibly overlapping propositions. The generalized information concept is called novelty and it is accompanied by two new concepts derived from it, designated as information and surprise, which describe "opposite" versions of novelty, information being related more to classical information theory and surprise being related more to the classical concept of statistical significance. In the discussion of these three concepts and their interrelations several properties or classes of covers are defined, which turn out to be lattices. The book also presents applications of these new concepts, mostly in statistics and in neuroscience. |
![]() ![]() You may like...
Electromagnetic Fluctuations at the…
Aleksandr I. Volokitin, Bo N. J. Persson
Hardcover
R4,460
Discovery Miles 44 600
Defending Realism - Ontological and…
Guido Bonino, Greg Jesson, …
Hardcover
R4,755
Discovery Miles 47 550
Functionalized Nanomaterials for…
Sudheesh K. Shukla, Chaudhery Mustansar Hussain, …
Paperback
R5,374
Discovery Miles 53 740
Agent-Oriented Software Engineering…
Onn Shehory, Arnon Sturm
Hardcover
|