![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra
The Bia owie a workshops on Geometric Methods in Physics, taking place in the unique environment of the Bia owie a natural forest in Poland, are among the important meetings in the field. Every year some 80 to 100 participants both from mathematics and physics join to discuss new developments and to interchange ideas. The current volume was produced on the occasion of the XXXI meeting in 2012. For the first time the workshop was followed by a School on Geometry and Physics, which consisted of advanced lectures for graduate students and young researchers. Selected speakers of the workshop were asked to contribute, and additional review articles were added. The selection shows that despite its now long tradition the workshop remains always at the cutting edge of ongoing research. The XXXI workshop had as a special topic the works of the late Boris Vasilievich Fedosov (1938 2011) who is best known for a simple and very natural construction of a deformation quantization for any symplectic manifold, and for his contributions to index theory.
This book is the first monograph wholly devoted to the investigation of differential and difference dimension theory. The differential dimension polynomial describes in exact terms the degree of freedom of a dynamic system as well as the number of arbitrary constants in the general solution of a system of algebraic differential equations. Difference algebra arises from the study of algebraic difference equations and therefore bears a considerable resemblance to its differential counterpart. Difference algebra was developed in the same period as differential algebra and it has the same founder, J. Ritt. It grew to a mathematical area with its own ideas and methods mainly due to the work of R. Cohn, who raised difference algebra to the same level as differential algebra. The relatively new science of computer algebra has given strong impulses to the theory of dimension polynomials, now that packages such as MAPLE enable the solution of many problems which cannot be solved otherwise. Applications of differential and difference dimension theory can be found in many fields of mathematics, as well as in theoretical physics, system theory and other areas of science. Audience: This book will be of interest to researchers and graduate students whose work involves differential and difference equations, algebra and number theory, partial differential equations, combinatorics and mathematical physics.
From the reviews:
In response to a growing interest in Total Least Squares (TLS) and Errors-In-Variables (EIV) modeling by researchers and practitioners, well-known experts from several disciplines were invited to prepare an overview paper and present it at the third international workshop on TLS and EIV modeling held in Leuven, Belgium, August 27-29, 2001. These invited papers, representing two-thirds of the book, together with a selection of other presented contributions yield a complete overview of the main scientific achievements since 1996 in TLS and Errors-In-Variables modeling. In this way, the book nicely completes two earlier books on TLS (SIAM 1991 and 1997). Not only computational issues, but also statistical, numerical, algebraic properties are described, as well as many new generalizations and applications. Being aware of the growing interest in these techniques, it is a strong belief that this book will aid and stimulate users to apply the new techniques and models correctly to their own practical problems.
The first and only book to make this research available in the West Concise and accessible: proofs and other technical matters are kept to a minimum to help the non-specialist Each chapter is self-contained to make the book easy-to-use
From July 31 through August 3,1997, the Pennsylvania State University hosted the Topics in Number Theory Conference. The conference was organized by Ken Ono and myself. By writing the preface, I am afforded the opportunity to express my gratitude to Ken for beng the inspiring and driving force behind the whole conference. Without his energy, enthusiasm and skill the entire event would never have occurred. We are extremely grateful to the sponsors of the conference: The National Sci ence Foundation, The Penn State Conference Center and the Penn State Depart ment of Mathematics. The object in this conference was to provide a variety of presentations giving a current picture of recent, significant work in number theory. There were eight plenary lectures: H. Darmon (McGill University), "Non-vanishing of L-functions and their derivatives modulo p. " A. Granville (University of Georgia), "Mean values of multiplicative functions. " C. Pomerance (University of Georgia), "Recent results in primality testing. " C. Skinner (Princeton University), "Deformations of Galois representations. " R. Stanley (Massachusetts Institute of Technology), "Some interesting hyperplane arrangements. " F. Rodriguez Villegas (Princeton University), "Modular Mahler measures. " T. Wooley (University of Michigan), "Diophantine problems in many variables: The role of additive number theory. " D. Zeilberger (Temple University), "Reverse engineering in combinatorics and number theory. " The papers in this volume provide an accurate picture of many of the topics presented at the conference including contributions from four of the plenary lectures."
The theory of Vector Optimization is developed by a systematic usage of infimum and supremum. In order to get existence and appropriate properties of the infimum, the image space of the vector optimization problem is embedded into a larger space, which is a subset of the power set, in fact, the space of self-infimal sets. Based on this idea we establish solution concepts, existence and duality results and algorithms for the linear case. The main advantage of this approach is the high degree of analogy to corresponding results of Scalar Optimization. The concepts and results are used to explain and to improve practically relevant algorithms for linear vector optimization problems.
Probability theory on compact Lie groups deals with the interaction between chance and symmetry, a beautiful area of mathematics of great interest in its own sake but which is now also finding increasing applications in statistics and engineering (particularly with respect to signal processing). The author gives a comprehensive introduction to some of the principle areas of study, with an emphasis on applicability. The most important topics presented are: the study of measures via the non-commutative Fourier transform, existence and regularity of densities, properties of random walks and convolution semigroups of measures and the statistical problem of deconvolution. The emphasis on compact (rather than general) Lie groups helps readers to get acquainted with what is widely seen as a difficult field but which is also justified by the wealth of interesting results at this level and the importance of these groups for applications. The book is primarily aimed at researchers working in probability, stochastic analysis and harmonic analysis on groups. It will also be of interest to mathematicians working in Lie theory and physicists, statisticians and engineers who are working on related applications. A background in first year graduate level measure theoretic probability and functional analysis is essential; a background in Lie groups and representation theory is certainly helpful but the first two chapters also offer orientation in these subjects."
Thisseries is devoted to the publication of monographs, lecture resp. seminar notes, and other materials arising from programs of the OSU Mathemaical Research Institute. This includes proceedings of conferences or workshops held at the Institute, and other mathematical writings.
This volume brings together recent, original research and survey articles by leading experts in several fields that include singularity theory, algebraic geometry and commutative algebra. The motivation for this collection comes from the wide-ranging research of the distinguished mathematician, Antonio Campillo, in these and related fields. Besides his influence in the mathematical community stemming from his research, Campillo has also endeavored to promote mathematics and mathematicians' networking everywhere, especially in Spain, Latin America and Europe. Because of his impressive achievements throughout his career, we dedicate this book to Campillo in honor of his 65th birthday. Researchers and students from the world-wide, and in particular Latin American and European, communities in singularities, algebraic geometry, commutative algebra, coding theory, and other fields covered in the volume, will have interest in this book.
This edited volume offers a state of the art overview of fast and robust solvers for the Helmholtz equation. The book consists of three parts: new developments and analysis in Helmholtz solvers, practical methods and implementations of Helmholtz solvers, and industrial applications. The Helmholtz equation appears in a wide range of science and engineering disciplines in which wave propagation is modeled. Examples are: seismic inversion, ultrasone medical imaging, sonar detection of submarines, waves in harbours and many more. The partial differential equation looks simple but is hard to solve. In order to approximate the solution of the problem numerical methods are needed. First a discretization is done. Various methods can be used: (high order) Finite Difference Method, Finite Element Method, Discontinuous Galerkin Method and Boundary Element Method. The resulting linear system is large, where the size of the problem increases with increasing frequency. Due to higher frequencies the seismic images need to be more detailed and, therefore, lead to numerical problems of a larger scale. To solve these three dimensional problems fast and robust, iterative solvers are required. However for standard iterative methods the number of iterations to solve the system becomes too large. For these reason a number of new methods are developed to overcome this hurdle. The book is meant for researchers both from academia and industry and graduate students. A prerequisite is knowledge on partial differential equations and numerical linear algebra.
Signal processing applications have burgeoned in the past decade.
During the same time, signal processing techniques have matured
rapidly and now include tools from many areas of mathematics,
computer science, physics, and engineering. This trend will
continue as many new signal processing applications are opening up
in consumer products and communications systems.
The first part of this volume gathers the lecture notes of the courses of the "XVII Escuela Hispano-Francesa", held in Gijon, Spain, in June 2016. Each chapter is devoted to an advanced topic and presents state-of-the-art research in a didactic and self-contained way. Young researchers will find a complete guide to beginning advanced work in fields such as High Performance Computing, Numerical Linear Algebra, Optimal Control of Partial Differential Equations and Quantum Mechanics Simulation, while experts in these areas will find a comprehensive reference guide, including some previously unpublished results, and teachers may find these chapters useful as textbooks in graduate courses. The second part features the extended abstracts of selected research work presented by the students during the School. It highlights new results and applications in Computational Algebra, Fluid Mechanics, Chemical Kinetics and Biomedicine, among others, offering interested researchers a convenient reference guide to these latest advances.
This volume contains the proceedings of the NATO Advanced Study Institute "Symmetric Functions 2001: Surveys of Developments and Per- spectives", held at the Isaac Newton Institute for Mathematical Sciences in Cambridge, UK, during the two weeks 25 June - 6 July 2001. The objective of the ASI was to survey recent developments and outline research perspectives in various fields, for which the fundamental questions can be stated in the language of symmetric functions (along the way emphasizing interdisciplinary connections). The instructional goals of the event determined its format: the ASI consisted of about a dozen mini-courses. Seven of them served as a basis for the papers comprising the current volume. The ASI lecturers were: Persi Diaconis, William Fulton, Mark Haiman, Phil Hanlon, Alexander Klyachko, Bernard Leclerc, Ian G. Macdonald, Masatoshi Noumi, Andrei Okounkov, Grigori Olshanski, Eric Opdam, Ana- toly Vershik, and Andrei Zelevinsky. The organizing committee consisted of Phil Hanlon, Ian Macdonald, Andrei 0 kounkov, G rigori 0 lshanski (co-director), and myself ( co-director). The original ASI co-director Sergei Kerov, who was instrumental in determining the format and scope of the event, selection of speakers, and drafting the initial grant proposal, died in July 2000. Kerov's mathemat- ical ideas strongly influenced the field, and were presented at length in a number of ASI lectures. A special afternoon session on Monday, July 2, was dedicated to his memory.
The theory of table algebras was introduced in 1991 by Z. Arad and H. Blau in order to treat, in a uniform way, products of conjugacy classes and irreducible characters of finite groups. Today, table algebra theory is a well-established branch of modern algebra with various applications, including the representation theory of finite groups, algebraic combinatorics and fusion rules algebras. This book presents the latest developments in this area. Its main goal is to give a classification of the Normalized Integral Table Algebras (Fusion Rings) generated by a faithful non-real element of degree 3. Divided into 4 parts, the first gives an outline of the classification approach, while remaining parts separately treat special cases that appear during classification. A particularly unique contribution to the field, can be found in part four, whereby a number of the algebras are linked to the polynomial irreducible representations of the group SL3(C). This book will be of interest to research mathematicians and PhD students working in table algebras, group representation theory, algebraic combinatorics and integral fusion rule algebras.
For every mathematician, ring theory and K-theory are intimately connected: al- braic K-theory is largely the K-theory of rings. At ?rst sight, polytopes, by their very nature, must appear alien to surveyors of this heartland of algebra. But in the presence of a discrete structure, polytopes de?ne a?ne monoids, and, in their turn, a?ne monoids give rise to monoid algebras. Teir spectra are the building blocks of toric varieties, an area that has developed rapidly in the last four decades. From a purely systematic viewpoint, "monoids" should therefore replace "po- topes" in the title of the book. However, such a change would conceal the geometric ?avor that we have tried to preserve through all chapters. Before delving into a description of the contents we would like to mention three general features of the book: (?) the exhibiting of interactions of convex geometry, ring theory, and K-theory is not the only goal; we present some of the central results in each of these ?elds; (?) the exposition is of constructive (i. e., algorithmic) nature at many places throughout the text-there is no doubt that one of the driving forces behind the current popularity of combinatorial geometry is the quest for visualization and computation; (? ) despite the large amount of information from various ?elds, we have strived to keep the polytopal perspective as the major organizational principle.
This book distinguishes itself from the many other textbooks on the topic of linear algebra by including mathematical and computational chapters along with examples and exercises with Matlab. In recent years, the use of computers in many areas of engineering and science has made it essential for students to get training in numerical methods and computer programming. Here, the authors use both Matlab and SciLab software as well as covering core standard material. It is intended for libraries; scientists and researchers; pharmaceutical industry.
This book takes a unique approach to information retrieval by laying down the foundations for a modern algebra of information retrieval based on lattice theory. All major retrieval methods developed so far are described in detail a" Boolean, Vector Space and probabilistic methods, but also Web retrieval algorithms like PageRank, HITS, and SALSA a" and the author shows that they all can be treated elegantly in a unified formal way, using lattice theory as the one basic concept. Further, he also demonstrates that the lattice-based approach to information retrieval allows us to formulate new retrieval methods. SAndor Dominicha (TM)s presentation is characterized by an engineering-like approach, describing all methods and technologies with as much mathematics as needed for clarity and exactness. His readers in both computer science and mathematics will learn how one single concept can be used to understand the most important retrieval methods, to propose new ones, and also to gain new insights into retrieval modeling in general. Thus, his book is appropriate for researchers and graduate students, who will additionally benefit from the many exercises at the end of each chapter.
Automated and semi-automated manipulation of so-called labelled transition systems has become an important means in discovering flaws in software and hardware systems. Process algebra has been developed to express such labelled transition systems algebraically, which enhances the ways of manipulation by means of equational logic and term rewriting.The theory of process algebra has developed rapidly over the last twenty years, and verification tools have been developed on the basis of process algebra, often in cooperation with techniques related to model checking. This textbook gives a thorough introduction into the basics of process algebra and its applications.
"The theory is systematically developed by the axiomatic method that has, since von Neumann, dominated the general approach to linear functional analysis and that achieves here a high degree of lucidity and clarity. The presentation is never awkward or dry, as it sometimes is in other "modern" textbooks; it is as unconventional as one has come to expect from the author. The book contains about 350 well placed and instructive problems, which cover a considerable part of the subject. All in all this is an excellent work, of equally high value for both student and teacher". Zentralblatt fuer Mathematik
This book is an elaboration of ideas of Irving Kaplansky introduced in his book Rings of operators ([52], [54]). The subject of Baer *-rings has its roots in von Neumann's theory of 'rings of operators' (now called von Neumann algebras), that is, *-algebras of operators on a Hilbert space, containing the identity op- ator, that are closed in the weak operator topology (hence also the name W*-algebra). Von Neumann algebras are blessed with an excess of structure-algebraic, geometric, topological-so much, that one can easily obscure, through proof by overkill, what makes a particular theorem work. The urge to axiomatize at least portions of the theory of von N- mann algebras surfaced early, notably in work of S. W. P. Steen [84], I. M. Gel'fand and M. A. Naimark [30], C. E. Rickart 1741, and von Neumann himself [53]. A culmination was reached in Kaplansky's AW*-algebras [47], proposed as a largely algebraic setting for the - trinsic (nonspatial) theory of von Neumann algebras (i. e., the parts of the theory that do not refer to the action of the elements of the algebra on the vectors of a Hilbert space). Other, more algebraic developments had occurred in lattice theory and ring theory. Von Neumann's study of the projection lattices of certain operator algebras led him to introduce continuous geometries (a kind of lattice) and regular rings (which he used to 'coordinatize' certain continuous geometries, in a manner analogous to the introd- tion of division ring coordinates in projective geometry).
This book is appropriate for second to fourth year undergraduates. In addition to the material traditionally taught at this level, the book contains several applications: Polya-Burnside Enumeration, Mutually Orthogonal Latin Squares, Error-Correcting Codes and a classification of the finite groups of isometries of the plane and the finite rotation groups in Euclidean 3-space. It is hoped that these applications will help the reader achieve a better grasp of the rather abstract ideas presented and convince him/her that pure mathematics, in addition to having an austere beauty of its own, can be applied to solving practical problems.Considerable emphasis is placed on the algebraic system consisting of congruence classes mod n under the usual operations of addition and multiplication. The reader is thus introduced - via congruence classes - to the idea of cosets and factor groups. This enables the transition to cosets and factor objects in a more abstract setting to be relatively painless. The chapters dealing with applications help to reinforce the concepts and methods developed in the context of more down-to-earth problems.Most introductory texts in abstract algebra either avoid cosets, factor objects and homomorphisms completely or introduce them towards the end of the book. In this book, these topics are dealt with early on so that the reader has at his/her disposal the tools required to give elegant proofs of the fundamental theorems. Moreover, homomorphisms play such a prominent role in algebra that they are used in this text wherever possible, even if there are alternative methods of proof.
Finite reductive groups and their representations lie at the heart of group theory. This volume treats linear representations of finite reductive groups and their modular aspects together with Hecke algebras, complex reflection groups, quantum groups, arithmetic groups, Lie groups, symmetric groups and general finite groups.
Trees are a fundamental object in graph theory and combinatorics as well as a basic object for data structures and algorithms in computer science. During thelastyearsresearchrelatedto(random)treeshasbeenconstantlyincreasing and several asymptotic and probabilistic techniques have been developed in order to describe characteristics of interest of large trees in di?erent settings. Thepurposeofthisbookistoprovideathoroughintroductionintovarious aspects of trees in randomsettings anda systematic treatment ofthe involved mathematicaltechniques. It shouldserveasa referencebookaswellasa basis for future research. One major conceptual aspect is to connect combinatorial and probabilistic methods that range from counting techniques (generating functions, bijections) over asymptotic methods (singularity analysis, saddle point techniques) to various sophisticated techniques in asymptotic probab- ity (convergence of stochastic processes, martingales). However, the reading of the book requires just basic knowledge in combinatorics, complex analysis, functional analysis and probability theory of master degree level. It is also part of concept of the book to provide full proofs of the major results even if they are technically involved and lengthy. |
![]() ![]() You may like...
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R3,107
Discovery Miles 31 070
Student Solutions Manual for…
Roxy Peck, Chris Olsen, …
Paperback
Krylov Subspace Methods - Principles and…
Joerg Liesen, Zdenek Strakos
Hardcover
R3,840
Discovery Miles 38 400
|