![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra
The theory of finite fields is of central importance in engineering and computer science, because of its applications to error-correcting codes, cryptography, spread-spectrum communications, and digital signal processing. Though not inherently difficult, this subject is almost never taught in depth in mathematics courses, (and even when it is the emphasis is rarely on the practical aspect). Indeed, most students get a brief and superficial survey which is crammed into a course on error-correcting codes. It is the object of this text to remedy this situation by presenting a thorough introduction to the subject which is completely sound mathematically, yet emphasizes those aspects of the subject which have proved to be the most important for applications. This book is unique in several respects. Throughout, the emphasis is on fields of characteristic 2, the fields on which almost all applications are based. The importance of Euclid's algorithm is stressed early and often. Berlekamp's polynomial factoring algorithm is given a complete explanation. The book contains the first treatment of Berlekamp's 1982 bit-serial multiplication circuits, and concludes with a thorough discussion of the theory of m-sequences, which are widely used in communications systems of many kinds.
One of the great successes of twentieth century mathematics has been the remarkable qualitative understanding of rational and integral points on curves, gleaned in part through the theorems of Mordell, Weil, Siegel, and Faltings. It has become clear that the study of rational and integral points has deep connections to other branches of mathematics: complex algebraic geometry, Galois and etale cohomology, transcendence theory and diophantine approximation, harmonic analysis, automorphic forms, and analytic number theory. This text, which focuses on higher dimensional varieties, provides precisely such an interdisciplinary view of the subject. It is a digest of research and survey papers by leading specialists; the book documents current knowledge in higher-dimensional arithmetic and gives indications for future research. It will be valuable not only to practitioners in the field, but to a wide audience of mathematicians and graduate students with an interest in arithmetic geometry."
The theory of automorphisms and derivations of associative rings is a direct descendant of the development of classical Galois theory and the theory of invariants. This volume presents a comprehensive overview of the methods and results of that theory, which has been greatly enriched during the last twenty years. Some of the material included appears for the first time. Among the problems discussed in this book are the following: construction of a Galois theory for prime and semiprime rings and its application to domains and free algebras; investigation of the problems of the algebraic dependence of automorphisms and derivations; studies of the fixed rings for finite groups and rings of constants for differential Lie algebras acting on the rings; non-commutative invariants of linear groups; theorems of finite groups acting on modular lattices; actions of Hopf algebras. The monograph is meant for specialists in algebra, but it can also be useful for a wider range of mathematicians. The inclusions in the book of the latest achievements on the structural theory of rings with generalized identities makes it desirable reading for graduate students as well.
This book is based on lectures delivered at Harvard in the Spring of 1991 and at the University of Utah during the academic year 1992-93. Formally, the book assumes only general algebraic knowledge (rings, modules, groups, Lie algebras, functors etc.). It is helpful, however, to know some basics of algebraic geometry and representation theory. Each chapter begins with its own introduction, and most sections even have a short overview. The purpose of what follows is to explain the spirit of the book and how different parts are linked together without entering into details. The point of departure is the notion of the left spectrum of an associative ring, and the first natural steps of general theory of noncommutative affine, quasi-affine, and projective schemes. This material is presented in Chapter I. Further developments originated from the requirements of several important examples I tried to understand, to begin with the first Weyl algebra and the quantum plane. The book reflects these developments as I worked them out in reallife and in my lectures. In Chapter 11, we study the left spectrum and irreducible representations of a whole lot of rings which are of interest for modern mathematical physics. The dasses of rings we consider indude as special cases: quantum plane, algebra of q-differential operators, (quantum) Heisenberg and Weyl algebras, (quantum) enveloping algebra ofthe Lie algebra sl(2) , coordinate algebra of the quantum group SL(2), the twisted SL(2) of Woronowicz, so called dispin algebra and many others.
In this book the details of many calculations are provided for access to work in quantum groups, algebraic differential calculus, noncommutative geometry, fuzzy physics, discrete geometry, gauge theory, quantum integrable systems, braiding, finite topological spaces, some aspects of geometry and quantum mechanics and gravity.
Numerical linear algebra is far too broad a subject to treat in a single introductory volume. Stewart has chosen to treat algorithms for solving linear systems, linear least squares problems, and eigenvalue problems involving matrices whose elements can all be contained in the high-speed storage of a computer. By way of theory, the author has chosen to discuss the theory of norms and perturbation theory for linear systems and for the algebraic eigenvalue problem. These choices exclude, among other things, the solution of large sparse linear systems by direct and iterative methods, linear programming, and the useful Perron-Frobenious theory and its extensions. However, a person who has fully mastered the material in this book should be well prepared for independent study in other areas of numerical linear algebra.
This is the first book on higher dimensional Hadamard matrices and their applications in telecommunications and information security. It is divided into three parts according to the dimensions of the Hadamard matrices treated.
This EMS volume provides an exposition of the structure theory of Fano varieties, i.e. algebraic varieties with an ample anticanonical divisor. This book will be very useful as a reference and research guide for researchers and graduate students in algebraic geometry.
This second edition is fully updated, covering in particular new types of coherent states (the so-called Gazeau-Klauder coherent states, nonlinear coherent states, squeezed states, as used now routinely in quantum optics) and various generalizations of wavelets (wavelets on manifolds, curvelets, shearlets, etc.). In addition, it contains a new chapter on coherent state quantization and the related probabilistic aspects. As a survey of the theory of coherent states, wavelets, and some of their generalizations, it emphasizes mathematical principles, subsuming the theories of both wavelets and coherent states into a single analytic structure. The approach allows the user to take a classical-like view of quantum states in physics. Starting from the standard theory of coherent states over Lie groups, the authors generalize the formalism by associating coherent states to group representations that are square integrable over a homogeneous space; a further step allows one to dispense with the group context altogether. In this context, wavelets can be generated from coherent states of the affine group of the real line, and higher-dimensional wavelets arise from coherent states of other groups. The unified background makes transparent an entire range of properties of wavelets and coherent states. Many concrete examples, such as coherent states from semisimple Lie groups, Gazeau-Klauder coherent states, coherent states forthe relativity groups, and several kinds of wavelets, are discussed in detail. The book concludes with a palette of potentialapplications, from the quantum physically oriented, likethe quantum-classical transition or the construction of adequate states in quantum information, to the most innovative techniques to be used in data processing. Intended as an introduction to current research for graduate students and others entering the field, the mathematical discussion is self-contained. With its extensive references to the research literature, the first edition of the book is already a proven compendium for physicists and mathematicians active in the field, and with full coverage of the latest theory and results the revised second edition is even more valuable."
Occasioned by the international conference "Rings and Factorizations" held in February 2018 at University of Graz, Austria, this volume represents a wide range of research trends in the theory of commutative and non-commutative rings and their modules, including multiplicative ideal theory, Dedekind and Krull rings and their generalizations, rings of integer valued-polynomials, topological aspects of ring theory, factorization theory in rings and semigroups and direct-sum decompositions of modules. The volume will be of interest to researchers seeking to extend or utilize work in these areas as well as graduate students wishing to find entryways into active areas of current research in algebra. A novel aspect of the volume is an emphasis on how diverse types of algebraic structures and contexts (rings, modules, semigroups, categories) may be treated with overlapping and reinforcing approaches.
Semiring theory stands with a foot in each of two mathematical domains. The first being abstract algebra and the other the fields of applied mathematics such as optimization theory, the theory of discrete-event dynamical systems, automata theory, and formal language theory, as well as from the allied areas of theoretical computer science and theoretical physics. Most important applications of semiring theory in these areas turn out to revolve around the problem of finding the equalizer of a pair of affine maps between two semimodules. In this volume, we chart the state of the art on solving this problem, and present many specific cases of applications. This book is essentially the third part of a trilogy, along with Semirings and their Applications, and Power Algebras over Semirings, both written by the same author and published by Kluwer Academic Publishers in 1999. While each book can be read independently of the others, to get the full force of the theory and applications one should have access to all three. This work will be of interest to academic and industrial researchers and graduate students. The intent of the book is to bring the applications to the attention of the abstract mathematicians and to make the abstract mathematics available to those who are using these tools in an ad-hoc manner without realizing the full force of the theory.
Among all computer-generated mathematical images, Julia sets of rational maps occupy one of the most prominent positions. Their beauty and complexity can be fascinating. They also hold a deep mathematical content. Computational hardness of Julia sets is the main subject of this book. By definition, a computable set in the plane can be visualized on a computer screen with an arbitrarily high magnification. There are countless programs to draw Julia sets. Yet, as the authors have discovered, it is possible to constructively produce examples of quadratic polynomials, whose Julia sets are not computable. This result is striking - it says that while a dynamical system can be described numerically with an arbitrary precision, the picture of the dynamics cannot be visualized. The book summarizes the present knowledge (most of it from the authors' own work) about the computational properties of Julia sets in a self-contained way. It is accessible to experts and students with interest in theoretical computer science or dynamical systems.
rd This volume contains papers written by the participants of the 3 Workshop on Operator Theory in Krein spaces and Nonlinear Eigenvalue Problems, held at the Technische Universit. at Berlin, Germany, December 12 to 14, 2003. The workshop covered topics from spectral, perturbation and extension t- ory of linear operators in Krein spaces. They included generalized Nevanlinna functions and related classes of functions, boundary value problems for di?erential operators, spectral problems for matrix polynomials, and perturbation problems forsecondorderevolutionequations.Alltheseproblemsarere?ectedinthepresent volume. The workshop was attended by 46 participants from 12 countries. It is a pleasure to acknowledge the substantial ?nancial support received from the - Research Training Network HPRN-CT-2000-00116 "Analysis and Operators" by the European Community, - DFG-Forschungszentrum MATHEON "Mathematik fur .. Schlussel- .. technologien", - Institute of Mathematics of the Technische Universit. at Berlin. We would also like to thank Petra Grimberger for her great help. Last but not least, special thanks are due to Jussi Behrndt, Christian Mehl and Carsten Trunk for their excellent workin the organisationof the workshopand the preparationof this volume. Without their assistance the workshop might not have taken place. The Editors Operator Theory: Advances and Applications, Vol. 162, 1-17 c 2005 Birkh. auser Verlag Basel/Switzerland Partial Non-stationary Perturbation Determinants for a Class of J-symmetric Operators Vadim Adamyan, Peter Jonas and Heinz Langer Abstract. We consider the partial non-stationary perturbation determinant (1) itA ?itH ? (t):=det e P e ,t? R.
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
This volume is the first of two containing selected papers from the International Conference on Advances in Mathematical Sciences, Vellore, India, December 2017 - Volume I. This meeting brought together researchers from around the world to share their work, with the aim of promoting collaboration as a means of solving various problems in modern science and engineering. The authors of each chapter present a research problem, techniques suitable for solving it, and a discussion of the results obtained. These volumes will be of interest to both theoretical- and application-oriented individuals in academia and industry. Papers in Volume I are dedicated to active and open areas of research in algebra, analysis, operations research, and statistics, and those of Volume II consider differential equations, fluid mechanics, and graph theory.
* The main treatment is devoted to the analysis of systems of linear partial differential equations (PDEs) with constant coefficients, focusing attention on null solutions of Dirac systems * All the necessary classical material is initially presented * Geared toward graduate students and researchers in (hyper)complex analysis, Clifford analysis, systems of PDEs with constant coefficients, and mathematical physics
Written by the recipient of the 1997 MAA Chauvenet Prize for mathematical exposition, this book tells how the theory of Lie groups emerged from a fascinating cross fertilization of many strains of 19th and early 20th century geometry, analysis, mathematical physics, algebra and topology. The reader will meet a host of mathematicians from the period and become acquainted with the major mathematical schools. The first part describes the geometrical and analytical considerations that initiated the theory at the hands of the Norwegian mathematician, Sophus Lie. The main figure in the second part is Weierstrass' student Wilhelm Killing, whose interest in the foundations of non-Euclidean geometry led to his discovery of almost all the central concepts and theorems on the structure and classification of semisimple Lie algebras. The scene then shifts to the Paris mathematical community and Elie Cartan's work on the representation of Lie algebras. The final part describes the influential, unifying contributions of Hermann Weyl and their context: Hilbert's Göttingen, general relativity and the Frobenius-Schur theory of characters. The book is written with the conviction that mathematical understanding is deepened by familiarity with underlying motivations and the less formal, more intuitive manner of original conception. The human side of the story is evoked through extensive use of correspondence between mathematicians. The book should prove enlightening to a broad range of readers, including prospective students of Lie theory, mathematicians, physicists and historians and philosophers of science.
Edward Conze's The Psychology of Mass Propaganda presents a commentary on the psychology of propaganda and the rise of fascism in Europe in the 1930s. Completed in 1939, during the period of Conze's own inflection from Marxist philosophy to Buddhist studies, the original manuscript was never published and is now in print for the first time. Presenting a unique historical perspective, while also appealing to an acutely topical interest in the conditions under which autocracy and fascism arise, the book examines the psychology of mass propaganda through copious contemporary and historical examples. Conze focuses especially on recent news articles and the statements of the propagandists of many of the governments that would go on to participate in the Second World War, including Germany, Italy, the USSR, USA and UK, all of which he interprets through the lens of recent psychological and historical research. The book has been edited and includes a new introduction by Richard N. Levine and Nathan H. Levine, also featuring a foreword by American legal scholar Laurence H. Tribe, and an afterword by actor, director, writer, and Buddhist priest Peter Coyote. This is a fascinating opportunity for scholars across several disciplines, including political scientists and psychologists, historians and sociologists, to access one of Conze's previously unpublished works. It will also be of importance to those interested in Conze's work on Buddhist philosophy, and in the psychology of propaganda more broadly.
Effective Polynomial Computation is an introduction to the algorithms of computer algebra. It discusses the basic algorithms for manipulating polynomials including factoring polynomials. These algorithms are discussed from both a theoretical and practical perspective. Those cases where theoretically optimal algorithms are inappropriate are discussed and the practical alternatives are explained. Effective Polynomial Computation provides much of the mathematical motivation of the algorithms discussed to help the reader appreciate the mathematical mechanisms underlying the algorithms, and so that the algorithms will not appear to be constructed out of whole cloth. Preparatory to the discussion of algorithms for polynomials, the first third of this book discusses related issues in elementary number theory. These results are either used in later algorithms (e.g. the discussion of lattices and Diophantine approximation), or analogs of the number theoretic algorithms are used for polynomial problems (e.g. Euclidean algorithm and p-adic numbers). Among the unique features of Effective Polynomial Computation is the detailed material on greatest common divisor and factoring algorithms for sparse multivariate polynomials. In addition, both deterministic and probabilistic algorithms for irreducibility testing of polynomials are discussed.
"Nature performs not hing vainly, and makes nothing unnecessary" Aristotle Interest in the passage of charged particles through crystals first appeared at the beginning of this century following experiments on x-ray diffraction in crystallattices, which provided the proof of an ordered distribution of atoms in a crystal. Stark [1] put forward the hypothesis that certain directions in a crystal should be relatively transparent to charged particles. These first ideas on the channeling of charged particles in crystals were forgotten but became topical again in the early 1960s when the channeling effect was rediscovered by computer simulation [2] and in experiments [3] that revealed anomalously long ion ranges in crystals. The orientational ef fects during the passage of charged particles through crystals have been found for a whole range of processes characterized by small impact parameters for collisions between particles and atoms: nuclear reactions, large-angle scatter ing, energy losses. Lindhard explained the channeling of charged particles in crystals [4]. The results of the numerous investigations into the channeling of low-energy (amounting to several MeV) charged particles in crystals have been summarized in several monographs and reviews [5~8l.
Relation algebras are algebras arising from the study of binary
relations.
A Mathematician Said Who Can Quote Me a Theorem that's True? For the ones that I Know Are Simply not So, When the Characteristic is Two! This pretty limerick ?rst came to my ears in May 1998 during a talk by T.Y. Lam 1 on ?eld invariants from the theory of quadratic forms. It is-poetic exaggeration allowed-a suitable motto for this monograph. What is it about? At the beginning of the seventies I drew up a specialization theoryofquadraticandsymmetricbilinear formsover ?elds[32].Let? : K? L?? be a place. Then one can assign a form? (?)toaform? over K in a meaningful way ? if? has "good reduction" with respect to? (see1.1). The basic idea is to simply apply the place? to the coe?cients of?, which must therefore be in the valuation ring of?. The specialization theory of that time was satisfactory as long as the ?eld L, and therefore also K, had characteristic 2. It served me in the ?rst place as the foundation for a theory of generic splitting of quadratic forms [33], [34]. After a very modest beginning, this theory is now in full bloom. It became important for the understanding of quadratic forms over ?elds, as can be seen from the book [26]of Izhboldin-Kahn-Karpenko-Vishik for instance. One should note that there exists a theoryof(partial)genericsplittingofcentralsimplealgebrasandreductivealgebraic groups, parallel to the theory of generic splitting of quadratic forms (see [29] and the literature cited there). |
![]() ![]() You may like...
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,968
Discovery Miles 29 680
Elementary Treatise on Mechanics - for…
William G (William Guy) 1820- Peck
Hardcover
R901
Discovery Miles 9 010
The Classification of the Finite Simple…
Inna Capdeboscq, Daniel Gorenstein, …
Paperback
R2,481
Discovery Miles 24 810
|