![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra
Proceedings of the Vth Nordic Summer School in Mathematics in Oslo, August 5-25, 1970
This volume contains one invited lecture which was presented by the 1994 Fields Medal ist Professor E. Zelmanov and twelve other papers which were presented at the Third International Conference on Algebra and Their Related Topics at Chang Jung Christian University, Tainan, Republic of China, during the period June 26-July 1, 200l. All papers in this volume have been refereed by an international referee board and we would like to express our deepest thanks to all the referees who were so helpful and punctual in submitting their reports. Thanks are also due to the Promotion and Research Center of National Science Council of Republic of China and the Chang Jung Christian University for their generous financial support of this conference. The spirit of this conference is a continuation of the last two International Tainan Moscow Algebra Workshop on Algebras and Their Related Topics which were held in the mid-90's of the last century. The purpose of this very conference was to give a clear picture of the recent development and research in the fields of different kinds of algebras both in Taiwan and in the rest ofthe world, especially say, Russia" Europe, North America and South America. Thus, we were hoping to enhance the possibility of future cooperation in research work among the algebraists ofthe five continents. Here we would like to point out that this algebra gathering will constantly be held in the future in the southern part of Taiwan."
Graph models are extremely useful for a large number of applications as they play an important role as structuring tools. They allow to model net structures - like roads, computers, telephones, social networks - instances of abstract data structures - like lists, stacks, trees - and functional or object oriented programming. The focus of this highly self-contained book is on homomorphisms and endomorphisms, matrices and eigenvalues.
An instant New York Times Bestseller! "Unreasonably entertaining . . . reveals how geometric thinking can allow for everything from fairer American elections to better pandemic planning." -The New York Times From the New York Times-bestselling author of How Not to Be Wrong-himself a world-class geometer-a far-ranging exploration of the power of geometry, which turns out to help us think better about practically everything. How should a democracy choose its representatives? How can you stop a pandemic from sweeping the world? How do computers learn to play Go, and why is learning Go so much easier for them than learning to read a sentence? Can ancient Greek proportions predict the stock market? (Sorry, no.) What should your kids learn in school if they really want to learn to think? All these are questions about geometry. For real. If you're like most people, geometry is a sterile and dimly remembered exercise you gladly left behind in the dust of ninth grade, along with your braces and active romantic interest in pop singers. If you recall any of it, it's plodding through a series of miniscule steps only to prove some fact about triangles that was obvious to you in the first place. That's not geometry. Okay, it is geometry, but only a tiny part, which has as much to do with geometry in all its flush modern richness as conjugating a verb has to do with a great novel. Shape reveals the geometry underneath some of the most important scientific, political, and philosophical problems we face. Geometry asks: Where are things? Which things are near each other? How can you get from one thing to another thing? Those are important questions. The word "geometry"comes from the Greek for "measuring the world." If anything, that's an undersell. Geometry doesn't just measure the world-it explains it. Shape shows us how.
Finite Fields are fundamental structures of Discrete Mathematics. They serve as basic data structures in pure disciplines like Finite Geometries and Combinatorics, and also have aroused much interest in applied disciplines like Coding Theory and Cryptography. A look at the topics of the proceed ings volume of the Third International Conference on Finite Fields and Their Applications (Glasgow, 1995) (see [18]), or at the list of references in I. E. Shparlinski's book [47] (a recent extensive survey on the Theory of Finite Fields with particular emphasis on computational aspects), shows that the area of Finite Fields goes through a tremendous development. The central topic of the present text is the famous Normal Basis Theo rem, a classical result from field theory, stating that in every finite dimen sional Galois extension E over F there exists an element w whose conjugates under the Galois group of E over F form an F-basis of E (i. e. , a normal basis of E over F; w is called free in E over F). For finite fields, the Nor mal Basis Theorem has first been proved by K. Hensel [19] in 1888. Since normal bases in finite fields in the last two decades have been proved to be very useful for doing arithmetic computations, at present, the algorithmic and explicit construction of (particular) such bases has become one of the major research topics in Finite Field Theory.
Based on invited lectures at the 1992 Canadian Algebra Seminar, this volume represents an up-to-date and unique report on finite-dimensional algebras as a subject with many serious interactions with other mathematical disciplines, including algebraic groups and Lie theory, automorphic forms, sheaf theory, finite groups, and homological algebra. It will interest mathematicians and graduate students in these and related subjects as an introduction to research in an area of increasing relevance and importance.
This two-volume work introduces the theory and applications of Schur-convex functions. The first volume introduces concepts and properties of Schur-convex functions, including Schur-geometrically convex functions, Schur-harmonically convex functions, Schur-power convex functions, etc. and also discusses applications of Schur-convex functions in symmetric function inequalities.
Let G be a group. An automorphism of G is called intense if it sends each subgroup of G to a conjugate; the collection of such automorphisms is denoted by Int(G). In the special case in which p is a prime number and G is a finite p-group, one can show that Int(G) is the semidirect product of a normal p-Sylow and a cyclic subgroup of order dividing p?1. In this paper we classify the finite p-groups whose groups of intense automorphisms are not themselves p-groups. It emerges from our investigation that the structure of such groups is almost completely determined by their nilpotency class: for p > 3, they share a quotient, growing with their class, with a uniquely determined infinite 2-generated pro-p group.
This self-contained book offers a new and direct approach to the theories of special functions with emphasis on spherical symmetry in Euclidean spaces of arbitrary dimensions. Based on many years of lecturing to mathematicians, physicists and engineers in scientific research institutions in Europe and the USA, the author uses elementary concepts to present the spherical harmonics in a theory of invariants of the orthogonal group. One of the highlights is the extension of the classical results of the spherical harmonics into the complex - particularly important for the complexification of the Funk-Hecke formula which successfully leads to new integrals for Bessel- and Hankel functions with many applications of Fourier integrals and Radon transforms. Numerous exercises stimulate mathematical ingenuity and bridge the gap between well-known elementary results and their appearance in the new formations.
This volume focuses on group theory and model theory with a particular emphasis on the interplay of the two areas. The survey papers provide an overview of the developments across group, module, and model theory while the research papers present the most recent study in those same areas. With introductory sections that make the topics easily accessible to students, the papers in this volume will appeal to beginning graduate students and experienced researchers alike. As a whole, this book offers a cross-section view of the areas in group, module, and model theory, covering topics such as DP-minimal groups, Abelian groups, countable 1-transitive trees, and module approximations. The papers in this book are the proceedings of the conference "New Pathways between Group Theory and Model Theory," which took place February 1-4, 2016, in Mulheim an der Ruhr, Germany, in honor of the editors' colleague Rudiger Goebel. This publication is dedicated to Professor Goebel, who passed away in 2014. He was one of the leading experts in Abelian group theory.
An encompassing socio-historical survey of the political and sociological nature of groups, communities and societies. A transdisciplinary study of crowds, masses and groups as historical, sociological, psychological and psychosocial phenomena. A unique combination of sociology, psychoanalysis and group analysis in the study of social formations. An inquiry into the enigma of crowds and mass psychology with the history of group analytic and group relations' advances in England, especially the study of large groups in the research on group processes. A comprehensive presentation of the social unconscious theory in association with the study of large groups and the Incohesion theory as new group analytic tools for understanding contemporary crowds and masses. In today's world, flooded by social conflicts and polarizations and the mass impact of social media, this book enables the reader to map out the field of the unconscious life of crowds illuminating the darkness of twenty-first century collective movements.
This book is about the computational aspects of invariant theory. Of central interest is the question how the invariant ring of a given group action can be calculated. Algorithms for this purpose form the main pillars around which the book is built. There are two introductory chapters, one on Groebner basis methods and one on the basic concepts of invariant theory, which prepare the ground for the algorithms. Then algorithms for computing invariants of finite and reductive groups are discussed. Particular emphasis lies on interrelations between structural properties of invariant rings and computational methods. Finally, the book contains a chapter on applications of invariant theory, covering fields as disparate as graph theory, coding theory, dynamical systems, and computer vision. The book is intended for postgraduate students as well as researchers in geometry, computer algebra, and, of course, invariant theory. The text is enriched with numerous explicit examples which illustrate the theory and should be of more than passing interest. More than ten years after the first publication of the book, the second edition now provides a major update and covers many recent developments in the field. Among the roughly 100 added pages there are two appendices, authored by Vladimi r Popov, and an addendum by Norbert A'Campo and Vladimir Popov.
This volume comprises both research and survey articles originating from the conference on Arithmetic and Geometry around Quantization held in Istanbul in 2006. A wide range of topics related to quantization are covered, thus aiming to give a glimpse of a broad subject in very different perspectives.
This monograph is devoted to the creation of a comprehensive formalism for quantitative description of polarized modes' linear interaction in modern single-mode optic fibers. The theory of random connections between polarized modes, developed in the monograph, allows calculations of the zero shift deviations for a fiber ring interferometer. The monograph addresses also the Sagnac effect and the Thomas precession. Devices such as gyroscopes, used in navigation and flight control, work based on this technology. Given the ever increasing market for navigation and air traffic, researchers and practitioners in research and industry need a fundamental and sound understanding of the principles. This work presents the underlying physical foundations.
This book describes the solution of electrodynamic boundary problems, which arose in the practical life of a designer. Only a few problems can be solved analytically and some of these solutions are given in the book, for example, the computation of a strip line in a rectangular or circular cylinder capacitance. Practical lines' configurations require computational work. As the authors' practice shows, the use of Green functions, leading to singular integral equations, is a powerful and pretty universal method to solve different boundary problems, including electrodynamic ones. The book presents the results of computations of microstrip lines on magnetized (longitudinally and transversally) ferrite and semiconductor substrates taking into account all the geometric sizes. The properties of gyrotropic media are described in the book for the reader's convenience. The geometrical shape may be practically any. The integral equations are exact and give the proper field near the edges. Actually, the use of singular integral equations reduces the experimental verification to minimum. The book will be useful for students, engineers, designers and researchers. It contains a lot of computed results, which are verified experimentally and can be used immediately.
The main TOPIC of this book is that of Groebner bases and their applications. The main PURPOSE of this book is that of bridging the current gap in the literature between theory and real computation. The book can be used by teachers and students alike as a comprehensive guide to both the theory and the practice of Computational Commutative Algebra. It has been made as self-contained as possible, and thus is ideally suited as a textbook for graduate or advanced undergraduate courses. Numerous applications are described, covering fields as disparate as algebraic geometry and financial markets. To aid a deeper understanding of these applications there are 44 tutorials aimed at illustrating how the theory can be used in these cases. The computational aspects of the tutorials can be carried out with the computer algebra system CoCoA, an introduction to which appears in an appendix. Besides the tutorials there are plenty of exercises, some of a theoretical nature and others more practical.
This book attempts to 'shake up' the current complacency around therapy and 'mental health' behaviours by putting therapy fully into context using Social Contextual Analysis; showing how changes to our social, discursive, and societal environments, rather than changes to an individual's 'mind', will reduce suffering from the 'mental health' behaviours. Guerin challenges many assumptions about both current therapy and psychology, and offers alternative approaches, synthesized from sociology, social anthropology, sociolinguistics, and elsewhere. The book provides a way of addressing the 'mental health' behaviours including actions, talking, thinking, and emotions, by taking people's external life situations into account, and not relying on an imagined 'internal source'. Guerin describes the broad contexts for current Western therapies, referring to social, discursive, cultural, societal, and economic contexts, and suggests that we need to research the components of therapies and stop treating therapies as units. He reframes different types of therapy away from their abstract jargons, offering an alternative approach grounded in our real social worlds, aligning with new thinking that challenges the traditional methods of therapy, and also providing a better framework for rethinking psychology itself. The book ultimately suggests more emphasis should be put on 'mental health' behaviours as arising from social issues including the modern contexts of extreme capitalism, excessive bureaucracy, weakened discursive communities, and changing forms of social relationships. Practical guidelines are provided for building the reimagined therapies into clinics and institutions where labelling and pathologizing the 'mental health' behaviours will no longer be needed. By putting 'mental health' behaviours and therapy into a naturalistic or ecological social sciences framework, this book will be practical and fascinating reading for professional therapists, counsellors, social workers, and mental health nurses, as well as academics interested in psychology and the social sciences more generally.
This impressive volume is dedicated to Mel Nathanson, a leading authoritative expert for several decades in the area of combinatorial and additive number theory. For several decades, Mel Nathanson's seminal ideas and results in combinatorial and additive number theory have influenced graduate students and researchers alike. The invited survey articles in this volume reflect the work of distinguished mathematicians in number theory, and represent a wide range of important topics in current research.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Gad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of s9phistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics."
The book gives a comprehensive account of the basic algebraic properties of the classical groups over rings. Much of the theory appears in book form for the first time, and most proofs are given in detail. The book also includes a revised and expanded version of DieudonnA(c)'s classical theory over division rings. The authors analyse congruence subgroups, normal subgroups and quotient groups, they describe their isomorphisms and investigate connections with linear and hermitian K-theory. A first insight is offered through the simplest case of the general linear group. All the other classical groups, notably the symplectic, unitary and orthogonal groups, are dealt with uniformly as isometry groups of generalized quadratic modules. New results on the unitary Steinberg groups, the associated K2-groups and the unitary symbols in these groups lead to simplified presentation theorems for the classical groups. Related material such as the K-theory exact sequences of Bass and Sharpe and the Merkurjev-Suslin theorem is outlined. "From" "the foreword by J. DieudonnA(c): " "All mathematicians interested in classical groups should be grateful to these two outstanding investigators for having brought together old and new results (many of them their own) into a superbly organized whole. I am confident that their book will remain for a long time the standard reference in the theory."
Psychology of Prejudice and Discrimination provides a comprehensive and compelling overview of what psychological theory and research have to say about the nature, causes, and reduction of prejudice and discrimination. It balances a detailed discussion of theories and selected research with applied examples that ensure the material is relevant to students. This edition has been thoroughly revised and updated and addresses several interlocking themes. It first looks at the nature of prejudice and discrimination, followed by a discussion of research methods. Next come the psychological underpinnings of prejudice: the nature of stereotypes, the conditions under which stereotypes influence responses to other people, contemporary theories of prejudice, and how individuals' values and belief systems are related to prejudice. Explored next are the development of prejudice in children and the social context of prejudice. The theme of discrimination is developed via discussions of the nature of discrimination, the experience of discrimination, and specific forms of discrimination, including gender, gender identity, sexual orientation, age, ability, and appearance. The concluding theme is the reduction of prejudice. The book is accompanied by a comprehensive website featuring an Instructor Manual that contains activities and tools to help with teaching a prejudice and discrimination course; PowerPoint slides for every chapter; and a Test Bank with short answer and multiple-choice exam questions for every chapter. This book is an essential companion for all students of prejudice and discrimination, including those in psychology, education, social work, business, communication studies, ethnic studies, and other disciplines. In addition to courses on prejudice and discrimination, this book will also appeal to those studying racism and diversity.
The book presents surveys describing recent developments in most of the primary subfields of General Topology, and its applications to Algebra and Analysis during the last decade, following the previous editions (North Holland, 1992 and 2002). The book was prepared in connection with the Prague Topological Symposium, held in 2011. During the last 10 years the focus in General Topology changed and therefore the selection of topics differs from that chosen in 2002. The following areas experienced significant developments: Fractals, Coarse Geometry/Topology, Dimension Theory, Set Theoretic Topology and Dynamical Systems.
The primary focus here is on log-linear models for contingency tables, but in this second edition, greater emphasis has been placed on logistic regression. The book explores topics such as logistic discrimination and generalised linear models, and builds upon the relationships between these basic models for continuous data and the analogous log-linear and logistic regression models for discrete data. It also carefully examines the differences in model interpretations and evaluations that occur due to the discrete nature of the data. Sample commands are given for analyses in SAS, BMFP, and GLIM, while numerous data sets from fields as diverse as engineering, education, sociology, and medicine are used to illustrate procedures and provide exercises. Throughoutthe book, the treatment is designed for students with prior knowledge of analysis of variance and regression. |
![]() ![]() You may like...
Critical Consciousness in Dual Language…
Lisa M. Dorner, Deborah Palmer, …
Paperback
R1,166
Discovery Miles 11 660
Teaching Challenged and Challenging…
Jason DeHart, Rachelle S. Savitz, …
Paperback
R1,158
Discovery Miles 11 580
Critical Pedagogy in the Language and…
Gloria Park, Sarah Bogdan, …
Hardcover
R4,058
Discovery Miles 40 580
How Young Adult Literature Gets Taught…
Steven Bickmore, T. Hunter Strickland, …
Paperback
R1,158
Discovery Miles 11 580
Developing Writing Skills for IELTS - A…
Sin Wang Chong, Xuejun Ye
Hardcover
R4,083
Discovery Miles 40 830
Multilingual Perspectives from Europe…
Bruna Di Sabato, Bronwen Hughes
Hardcover
R4,072
Discovery Miles 40 720
|