![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra
This is the first of three volumes of a comprehensive and elementary treatment of finite p-group theory. Topics covered in this monograph include: (a) counting of subgroups, with almost all main counting theorems being proved, (b) regular p-groups and regularity criteria, (c) p-groups of maximal class and their numerous characterizations, (d) characters of p-groups, (e) p-groups with large Schur multiplier and commutator subgroups, (f) (p-1)-admissible Hall chains in normal subgroups, (g) powerful p-groups, (h) automorphisms of p-groups, (i) p-groups all of whose nonnormal subgroups are cyclic, (j) Alperin's problem on abelian subgroups of small index. The book is suitable for researchers and graduate students of mathematics with a modest background on algebra. It also contains hundreds of original exercises (with difficult exercises being solved) and a comprehensive list of about 700 open problems.
In the fall of 1992 I was invited by Professor Changho Keem to visit Seoul National University and give a series of talks. I was asked to write a monograph based on my talks, and the result was published by the Global Analysis Research Center of that University in 1994. The monograph treated deficiency modules and liaison theory for complete intersections. Over the next several years I continually thought of improvements and additions that I would like to make to the manuscript, and at the same time my research led me in directions that gave me a fresh perspective on much of the material, especially in the direction of liaison theory. This re sulted in a dramatic change in the focus of this manuscript, from complete intersections to Gorenstein ideals, and a substantial amount of additions and revisions. It is my hope that this book now serves not only as an introduction to a beautiful subject, but also gives the reader a glimpse at very recent developments and an idea of the direction in which liaison theory is going, at least from my perspective. One theme which I have tried to stress is the tremendous amount of geometry which lies at the heart of the subject, and the beautiful interplay between algebra and geometry. Whenever possible I have given remarks and examples to illustrate this interplay, and I have tried to phrase the results in as geometric a way as possible."
This edition has been revised and expanded, particularly the material on rings and fields, to provide a comprehensive first course in abstract algebra. The text is written for the student encountering this subject for the first time - the treatment is clear and patient, but also provides enough depth to demonstrate the insights that abstract algebra offers. The book includes many worked examples and each chapter contains a set of graded exercises, with partial solutions.
The three volumes of Interest Rate Modeling present a comprehensive and up-to-date treatment of techniques and models used in the pricing and risk management of fixed income securities. Written by two leading practitioners and seasoned industry veterans, this unique series combines finance theory, numerical methods, and approximation techniques to provide the reader with an integrated approach to the process of designing and implementing industrial-strength models for fixed income security valuation and hedging. Aiming to bridge the gap between advanced theoretical models and real-life trading applications, the pragmatic, yet rigorous, approach taken in this book will appeal to students, academics, and professionals working in quantitative finance. The first half of Volume III contains a detailed study of several classes of fixed income securities, ranging from simple vanilla options to highly exotic cancelable and path-dependent derivatives. The analysis is done in product-specific fashion covering, among other subjects, risk characterization, calibration strategies, and valuation methods. In its second half, Volume III studies the general topic of derivative portfolio risk management, with a particular emphasis on the challenging problem of computing smooth price sensitivities to market input perturbations.
This volume features contributions from the Women in Commutative Algebra (WICA) workshop held at the Banff International Research Station (BIRS) from October 20-25, 2019, run by the Pacific Institute of Mathematical Sciences (PIMS). The purpose of this meeting was for groups of mathematicians to work on joint research projects in the mathematical field of Commutative Algebra and continue these projects together long-distance after its close. The chapters include both direct results and surveys, with contributions from research groups and individual authors. The WICA conference was the first of its kind in the large and vibrant area of Commutative Algebra, and this volume is intended to showcase its important results and to encourage further collaboration among marginalized practitioners in the field. It will be of interest to a wide range of researchers, from PhD students to senior experts.
The modular representation theory of Iwahori-Hecke algebras and this theory's connection to groups of Lie type is an area of rapidly expanding interest; it is one that has also seen a number of breakthroughs in recent years. In classifying the irreducible representations of Iwahori-Hecke algebras at roots of unity, this book is a particularly valuable addition to current research in this field. Using the framework provided by the Kazhdan-Lusztig theory of cells, the authors develop an analogue of James' (1970) "characteristic-free'' approach to the representation theory of Iwahori-Hecke algebras in general. Presenting a systematic and unified treatment of representations of Hecke algebras at roots of unity, this book is unique in its approach and includes new results that have not yet been published in book form. It also serves as background reading to further active areas of current research such as the theory of affine Hecke algebras and Cherednik algebras. The main results of this book are obtained by an interaction of several branches of mathematics, namely the theory of Fock spaces for quantum affine Lie algebras and Ariki's theorem, the combinatorics of crystal bases, the theory of Kazhdan-Lusztig bases and cells, and computational methods. This book will be of use to researchers and graduate students in representation theory as well as any researchers outside of the field with an interest in Hecke algebras.
This book gives an intuitive and hands-on introduction to Topological Data Analysis (TDA). Covering a wide range of topics at levels of sophistication varying from elementary (matrix algebra) to esoteric (Grothendieck spectral sequence), it offers a mirror of data science aimed at a general mathematical audience. The required algebraic background is developed in detail. The first third of the book reviews several core areas of mathematics, beginning with basic linear algebra and applications to data fitting and web search algorithms, followed by quick primers on algebra and topology. The middle third introduces algebraic topology, along with applications to sensor networks and voter ranking. The last third covers key contemporary tools in TDA: persistent and multiparameter persistent homology. Also included is a user's guide to derived functors and spectral sequences (useful but somewhat technical tools which have recently found applications in TDA), and an appendix illustrating a number of software packages used in the field. Based on a course given as part of a masters degree in statistics, the book is appropriate for graduate students.
This volume is the proceedings of a conference on Finite Geometries, Groups, and Computation that took place on September 4-9, 2004, at Pingree Park, Colorado (a campus of Colorado State University). Not accidentally, the conference coincided with the 60th birthday of William Kantor, and the topics relate to his major research areas. Participants were encouraged to explore the deeper interplay between these fields. The survey papers by Kantor, O'Brien, and Penttila should serve to introduce both students and the broader mathematical community to these important topics and some of their connections while the volume as a whole gives an overview of current developments in these fields.
The main theme of this book is the theory of heights as they appear in various guises. This includes a large body of results on Mahlers measure of the height of a polynomial. The authors'approach is very down to earth as they cover the rationals, assuming no prior knowledge of elliptic curves. The chapters include examples and particular computations, with all special calculation included so as to be self-contained. The authors devote space to discussing Mahlers measure and to giving some convincing and original examples to explain this phenomenon. XXXXXXX NEUER TEXT The main theme of this book is the theory of heights as it appears in various guises. To this End.txt.Int.:, it examines the results of Mahlers measure of the height of a polynomial, which have never before appeared in book form. The authors take a down-to-earth approach that includes convincing and original examples. The book uncovers new and interesting connections between number theory and dynamics and will be interesting to researchers in both number theory and nonlinear dynamics."
Some mathematical disciplines can be presented and developed in the context of other disciplines, for instance Boolean algebras, that Stone has converted in a branch of ring theory, projective geome- tries, characterized by Birkhoff as lattices of a special type, projec- tive, descriptive and spherical geometries, represented by Prenowitz, as multigroups, linear geometries and convex sets presented by Jan- tosciak and Prenowitz as join spaces. As Prenowitz and Jantosciak did for geometries, in this book we present and study several ma- thematical disciplines that use the Hyperstructure Theory. Since the beginning, the Hyperstructure Theory and particu- larly the Hypergroup Theory, had applications to several domains. Marty, who introduced hypergroups in 1934, applied them to groups, algebraic functions and rational fractions. New applications to groups were also found among others by Eaton, Ore, Krasner, Utumi, Drbohlav, Harrison, Roth, Mockor, Sureau and Haddad. Connections with other subjects of classical pure Mathematics have been determined and studied: * Fields by Krasner, Stratigopoulos and Massouros Ch. * Lattices by Mittas, Comer, Konstantinidou, Serafimidis, Leoreanu and Calugareanu * Rings by Nakano, Kemprasit, Yuwaree * Quasigroups and Groupoids by Koskas, Corsini, Kepka, Drbohlav, Nemec * Semigroups by Kepka, Drbohlav, Nemec, Yuwaree, Kempra- sit, Punkla, Leoreanu * Ordered Structures by Prenowitz, Corsini, Chvalina IX x * Combinatorics by Comer, Tallini, Migliorato, De Salvo, Scafati, Gionfriddo, Scorzoni * Vector Spaces by Mittas * Topology by Mittas , Konstantinidou * Ternary Algebras by Bandelt and Hedlikova.
In his studies of cyclotomic fields, in view of establishing his monumental theorem about Fermat's last theorem, Kummer introduced "local" methods. They are concerned with divisibility of "ideal numbers" of cyclotomic fields by lambda = 1 - psi where psi is a primitive "p"-th root of 1 (p any odd prime). Henssel developed Kummer's ideas, constructed the field of "p"-adic numbers and proved the fundamental theorem known today. Kurschak formally introduced the concept of a valuation of a field, as being real valued functions on the set of non-zero elements of the field satisfying certain properties, like the "p"-adic valuations. Ostrowski, Hasse, Schmidt and others developed this theory and collectively, these topics form the primary focus of this book.
A comprehensive presentation of abstract algebra and an in-depth treatment of the applications of algebraic techniques and the relationship of algebra to other disciplines, such as number theory, combinatorics, geometry, topology, differential equations, and Markov chains.
This book defines and studies a combinatorial object called the pedigree and develops the theory for optimising a linear function over the convex hull of pedigrees (the Pedigree polytope). A strongly polynomial algorithm implementing the framework given in the book for checking membership in the pedigree polytope is a major contribution. This book challenges the popularly held belief in computer science that a problem included in the NP-complete class may not have a polynomial algorithm to solve. By showing STSP has a polynomial algorithm, this book settles the P vs NP question. This book has illustrative examples, figures, and easily accessible proofs for showing this unexpected result. This book introduces novel constructions and ideas previously not used in the literature. Another interesting feature of this book is it uses basic max-flow and linear multicommodity flow algorithms and concepts in these proofs establishing efficient membership checking for the pedigree polytope. Chapters 3-7 can be adopted to give a course on Efficient Combinatorial Optimization. This book is the culmination of the author's research that started in 1982 through a presentation on a new formulation of STSP at the XIth International Symposium on Mathematical Programming at Bonn.
This book contains select chapters on support vector algorithms from different perspectives, including mathematical background, properties of various kernel functions, and several applications. The main focus of this book is on orthogonal kernel functions, and the properties of the classical kernel functions-Chebyshev, Legendre, Gegenbauer, and Jacobi-are reviewed in some chapters. Moreover, the fractional form of these kernel functions is introduced in the same chapters, and for ease of use for these kernel functions, a tutorial on a Python package named ORSVM is presented. The book also exhibits a variety of applications for support vector algorithms, and in addition to the classification, these algorithms along with the introduced kernel functions are utilized for solving ordinary, partial, integro, and fractional differential equations. On the other hand, nowadays, the real-time and big data applications of support vector algorithms are growing. Consequently, the Compute Unified Device Architecture (CUDA) parallelizing the procedure of support vector algorithms based on orthogonal kernel functions is presented. The book sheds light on how to use support vector algorithms based on orthogonal kernel functions in different situations and gives a significant perspective to all machine learning and scientific machine learning researchers all around the world to utilize fractional orthogonal kernel functions in their pattern recognition or scientific computing problems.
This book introduces a new geometric vision of continued fractions. It covers several applications to questions related to such areas as Diophantine approximation, algebraic number theory, and toric geometry. The second edition now includes a geometric approach to Gauss Reduction Theory, classification of integer regular polygons and some further new subjects. Traditionally a subject of number theory, continued fractions appear in dynamical systems, algebraic geometry, topology, and even celestial mechanics. The rise of computational geometry has resulted in renewed interest in multidimensional generalizations of continued fractions. Numerous classical theorems have been extended to the multidimensional case, casting light on phenomena in diverse areas of mathematics. The reader will find an overview of current progress in the geometric theory of multidimensional continued fractions accompanied by currently open problems. Whenever possible, we illustrate geometric constructions with figures and examples. Each chapter has exercises useful for undergraduate or graduate courses.
The book is devoted to the perturbation analysis of matrix equations. The importance of perturbation analysis is that it gives a way to estimate the influence of measurement and/or parametric errors in mathematical models together with the rounding errors done in the computational process. The perturbation bounds may further be incorporated in accuracy estimates for the solution computed in finite arithmetic. This is necessary for the development of reliable computational methods, algorithms and software from the viewpoint of modern numerical analysis.
This modern translation of Sophus Lie's and Friedrich Engel's "Theorie der Transformationsgruppen I" will allow readers to discover the striking conceptual clarity and remarkably systematic organizational thought of the original German text. Volume I presents a comprehensive introduction to the theory and is mainly directed towards the generalization of ideas drawn from the study of examples. The major part of the present volume offers an extremely clear translation of the lucid original. The first four chapters provide not only a translation, but also a contemporary approach, which will help present day readers to familiarize themselves with the concepts at the heart of the subject. The editor's main objective was to encourage a renewed interest in the detailed classification of Lie algebras in dimensions 1, 2 and 3, and to offer access to Sophus Lie's monumental Galois theory of continuous transformation groups, established at the end of the 19th Century. Lie groups are widespread in mathematics, playing a role in representation theory, algebraic geometry, Galois theory, the theory of partial differential equations and also in physics, for example in general relativity. This volume is of interest to researchers in Lie theory and exterior differential systems and also to historians of mathematics. The prerequisites are a basic knowledge of differential calculus, ordinary differential equations and differential geometry.
This book collects important results concerning the classification and properties of nilpotent orbits in a Lie algebra. It develops the Dynkin-Kostant and Bala-Carter classifications of complex nilpotent orbits and derives the Lusztig-Spaltenstein theory of induction of nilpotent orbits.
Praise is perhaps the most widely used technique to influence others. When used appropriately, praise can motivate people, make them feel better, and improve their social relationships. Often, however, praise fails to work as intended and may even cause harm. Psychological Perspectives on Praise reviews and integrates psychological theory and research to provide an overarching perspective on praise. With contributions from leading scholars in the field, this book amalgamates diverse theoretical and empirical perspectives on praise. The book starts with providing an overview of prominent theories that seek to explain the effects of praise, including self-enhancement theory, self-verification theory, attribution theory, and self-determination theory. It then discusses several lines of empirical research on how praise impacts competence and motivation, self-perceptions (e.g., self-esteem and narcissism), and social relationships. It does so in a range of contexts, including children's learning at school, employees' commitment at work, and people's behavior within romantic relationships. The book concludes by showing how praise can be understood in its developmental and cultural context. Revealing that praise is a message rich in information about ourselves and our social environments, this book will be of interest to social, organizational, personality, developmental, and educational psychologists; students in psychology and related disciplines; and practitioners including teachers, managers, and counselors who use praise in their daily practice.
This book covers the material of an introductory course in linear algebra: sets and maps, vector spaces, bases, linear maps, matrices, determinants, systems of linear equations, Euclidean spaces, eigenvalues and eigenvectors, diagonalization of self-adjoint operators, and classification of matrices. The book is written for beginners. Its didactic features (the "book within a book" and multiple choice tests with commented answers) make it especially suitable for self-study.
Groups are arguably an essential and unavoidable part of our human lives-whether we are part of families, work teams, therapy groups, organizational systems, social clubs, or larger communities. In Groups in Transactional Analysis, Object Relations, and Family Systems: Studying Ourselves in Collective Life, N. Michel Landaiche, III addresses the intense feelings and unexamined beliefs that exist in relation to groups, and explores how to enhance learning, development and growth within them. Landaiche's multidisciplinary perspective is grounded in the traditions of Eric Berne's transactional analysis, Wilfred Bion's group-as-a-whole model, and Murray Bowen's family systems theory. The book presents a practice of studying ourselves in collective life that utilizes a naturalistic method of observation, analysis of experiential data, and hypothesis formation, all of which are subject to further revision as we gather more data from our lived experiences. Drawing from his extensive professional experience of group work in a range of contexts, Landaiche deftly explores topics including group culture, social pain, learning and language, and presents key principles which enhance and facilitate learning in groups. With a style that is both deeply personal and theoretically grounded in a diverse range of studies, Groups in Transactional Analysis, Object Relations, and Family Systems presents a contemporary assessment of how we operate collectively, and how modern life has changed our outlook. It will be essential reading for transactional analysts in practice and in training, as well as other professionals working with groups. It will also be of value to academics and students of psychology, psychotherapy, and group dynamics, and anyone seeking to understand their role within a group. See the below link to an interview about the book with Tess Elliott: https://vimeo.com/510266467
This volume offers English translations of three early works by Ernst Schroeder (1841-1902), a mathematician and logician whose philosophical ruminations and pathbreaking contributions to algebraic logic attracted the admiration and ire of figures such as Dedekind, Frege, Husserl, and C. S. Peirce. Today he still engages the sympathetic interest of logicians and philosophers. The works translated record Schroeder's journey out of algebra into algebraic logic and document his transformation of George Boole's opaque and unwieldy logical calculus into what we now recognize as Boolean algebra. Readers interested in algebraic logic and abstract algebra can look forward to a tour of the early history of those fields with a guide who was exceptionally thorough, unfailingly honest, and deeply reflective.
The aim of the present work is two-fold. Firstly it aims at a
giving an account of many existing algorithms for calculating with
finite-dimensional Lie algebras. Secondly, the book provides an
introduction into the theory of finite-dimensional Lie algebras.
These two subject areas are intimately related. First of all, the
algorithmic perspective often invites a different approach to the
theoretical material than the one taken in various other monographs
(e.g., 42], 48], 77], 86]). Indeed, on various occasions the
knowledge of certain algorithms allows us to obtain a
straightforward proof of theoretical results (we mention the proof
of the Poincare-Birkhoff-Witt theorem and the proof of Iwasawa's
theorem as examples). Also proofs that contain algorithmic
constructions are explicitly formulated as algorithms (an example
is the isomorphism theorem for semisimple Lie algebras that
constructs an isomorphism in case it exists). Secondly, the
algorithms can be used to arrive at a better understanding of the
theory. Performing the algorithms in concrete examples, calculating
with the concepts involved, really brings the theory of life. |
![]() ![]() You may like...
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,968
Discovery Miles 29 680
Linear Algebra and Its Applications…
David Lay, Steven Lay, …
Paperback
|