![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra
This volume gives an up-to-date review of the subject Integration in Finite Terms. The book collects four significant texts together with an extensive bibliography and commentaries discussing these works and their impact. These texts, either out of print or never published before, are fundamental to the subject of the book. Applications in combinatorics and physics have aroused a renewed interest in this well-developed area devoted to finding solutions of differential equations and, in particular, antiderivatives, expressible in terms of classes of elementary and special functions.
Introduction to Mathematical Modeling helps students master the processes used by scientists and engineers to model real-world problems, including the challenges posed by space exploration, climate change, energy sustainability, chaotic dynamical systems and random processes. Primarily intended for students with a working knowledge of calculus but minimal training in computer programming in a first course on modeling, the more advanced topics in the book are also useful for advanced undergraduate and graduate students seeking to get to grips with the analytical, numerical, and visual aspects of mathematical modeling, as well as the approximations and abstractions needed for the creation of a viable model.
Algebra, as we know it today, consists of many different ideas, concepts and results. A reasonable estimate of the number of these different items would be somewhere between 50,000 and 200,000. Many of these have been named and many more could (and perhaps should) have a name or a convenient designation. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. If this happens, one should be able to find enough information in this Handbook to judge if it is worthwhile to pursue the quest.
This book is a revised version of the first edition, regarded as a classic in its field. In some places, newer research results have been incorporated in the revision, and in other places, new material has been added to the chapters in the form of additional up-to-date references and some recent theorems to give readers some new directions to pursue.
This book concerns the use of dioid algebra as (max, +) algebra to treat the synchronization of tasks expressed by the maximum of the ends of the tasks conditioning the beginning of another task - a criterion of linear programming. A classical example is the departure time of a train which should wait for the arrival of other trains in order to allow for the changeover of passengers.The content focuses on the modeling of a class of dynamic systems usually called "discrete event systems" where the timing of the events is crucial. Events are viewed as sudden changes in a process which is, essentially, a man-made system, such as automated manufacturing lines or transportation systems. Its main advantage is its formalism which allows us to clearly describe complex notions and the possibilities to transpose theoretical results between dioids and practical applications.
In this book we give a complete geometric description of state spaces of operator algebras, Jordan as well as associative. That is, we give axiomatic characterizations of those convex sets that are state spaces of C*-algebras and von Neumann algebras, together with such characterizations for the normed Jordan algebras called JB-algebras and JBW-algebras. These non associative algebras generalize C*-algebras and von Neumann algebras re spectively, and the characterization of their state spaces is not only of interest in itself, but is also an important intermediate step towards the characterization of the state spaces of the associative algebras. This book gives a complete and updated presentation of the character ization theorems of [10]' [11] and [71]. Our previous book State spaces of operator algebras: basic theory, orientations and C*-products, referenced as [AS] in the sequel, gives an account of the necessary prerequisites on C*-algebras and von Neumann algebras, as well as a discussion of the key notion of orientations of state spaces. For the convenience of the reader, we have summarized these prerequisites in an appendix which contains all relevant definitions and results (listed as (AI), (A2), ... ), with reference back to [AS] for proofs, so that this book is self-contained.
Contents and treatment are fresh and very different from the standard treatments Presents a fully constructive version of what it means to do algebra The exposition is not only clear, it is friendly, philosophical, and considerate even to the most naive or inexperienced reader
This textbook on linear algebra includes the key topics of the
subject that most advanced undergraduates need to learn before
entering graduate school. All the usual topics, such as complex
vector spaces, complex inner products, the Spectral theorem for
normal operators, dual spaces, the minimal polynomial, the Jordan
canonical form, and the rational canonical form, are covered, along
with a chapter on determinants at the end of the book. In addition,
there is material throughout the text on linear differential
equations and how it integrates with all of the important concepts
in linear algebra.
This text features a careful treatment of flow lines and algebraic invariants in contact form geometry, a vast area of research connected to symplectic field theory, pseudo-holomorphic curves, and Gromov-Witten invariants (contact homology). In particular, it develops a novel algebraic tool in this field: rooted in the concept of critical points at infinity, the new algebraic invariants defined here are useful in the investigation of contact structures and Reeb vector fields. The book opens with a review of prior results and then proceeds through an examination of variational problems, non-Fredholm behavior, true and false critical points at infinity, and topological implications. An increasing convergence with regular and singular Yamabe-type problems is discussed, and the intersection between contact form and Riemannian geometry is emphasized. Rich in open problems and full, detailed proofs, this work lays the foundation for new avenues of study in contact form geometry and will benefit graduate students and researchers.
This is the first comprehensive basic monograph on mixed Hodge structures. Starting with a summary of classic Hodge theory from a modern vantage point the book goes on to explain Deligne's mixed Hodge theory. Here proofs are given using cubical schemes rather than simplicial schemes. Next come Hain's and Morgan's results on mixed Hodge structures related to homotopy theory. Steenbrink's approach of the limit mixed Hodge structure is then explained using the language of nearby and vanishing cycle functors bridging the passage to Saito's theory of mixed Hodge modules which is the subject of the last chapter. Since here D-modules are essential, these are briefly introduced in a previous chapter. At various stages applications are given, ranging from the Hodge conjecture to singularities. The book ends with three large appendices, each one in itself a resourceful summary of tools and results not easily found in one place in the existing literature (homological algebra, algebraic and differential topology, stratified spaces and singularities). The book is intended for advanced graduate students, researchers in complex algebraic geometry as well as interested researchers in nearby fields (algebraic geometry, mathematical physics
This is a college algebra-level textbook written to provide the kind of mathematical knowledge and experiences that students will need for courses in other fields, such as biology, chemistry, business, finance, economics, and other areas that are heavily dependent on data either from laboratory experiments or from other studies. The focus is on the fundamental mathematical concepts and the realistic problem-solving via mathematical modeling rather than the development of algebraic skills that might be needed in calculus. Functions, Data, and Models presents college algebra in a way that differs from almost all college algebra books available today. Rather than going over material covered in high school courses the Gordons teach something new. Students are given an introduction to data analysis and mathematical modeling presented at a level that students with limited algebraic skills can understand. The book contains a rich set of exercises, many of which use real data. Also included are thought experiments or what if questions that are meant to stretch the student s mathematical thinking.
Efficient parallel solutions have been found to many problems. Some of them can be obtained automatically from sequential programs, using compilers. However, there is a large class of problems - irregular problems - that lack efficient solutions. IRREGULAR 94 - a workshop and summer school organized in Geneva - addressed the problems associated with the derivation of efficient solutions to irregular problems. This book, which is based on the workshop, draws on the contributions of outstanding scientists to present the state of the art in irregular problems, covering aspects ranging from scientific computing, discrete optimization, and automatic extraction of parallelism. Audience: This first book on parallel algorithms for irregular problems is of interest to advanced graduate students and researchers in parallel computer science.
During the last twenty-five years quite remarkable relations between nonas sociative algebra and differential geometry have been discovered in our work. Such exotic structures of algebra as quasigroups and loops were obtained from purely geometric structures such as affinely connected spaces. The notion ofodule was introduced as a fundamental algebraic invariant of differential geometry. For any space with an affine connection loopuscular, odular and geoodular structures (partial smooth algebras of a special kind) were introduced and studied. As it happened, the natural geoodular structure of an affinely connected space al lows us to reconstruct this space in a unique way. Moreover, any smooth ab stractly given geoodular structure generates in a unique manner an affinely con nected space with the natural geoodular structure isomorphic to the initial one. The above said means that any affinely connected (in particular, Riemannian) space can be treated as a purely algebraic structure equipped with smoothness. Numerous habitual geometric properties may be expressed in the language of geoodular structures by means of algebraic identities, etc.. Our treatment has led us to the purely algebraic concept of affinely connected (in particular, Riemannian) spaces; for example, one can consider a discrete, or, even, finite space with affine connection (in the form ofgeoodular structure) which can be used in the old problem of discrete space-time in relativity, essential for the quantum space-time theory."
Inequalities continue to play an essential role in mathematics. The subject is per haps the last field that is comprehended and used by mathematicians working in all the areas of the discipline of mathematics. Since the seminal work Inequalities (1934) of Hardy, Littlewood and P6lya mathematicians have laboured to extend and sharpen the earlier classical inequalities. New inequalities are discovered ev ery year, some for their intrinsic interest whilst others flow from results obtained in various branches of mathematics. So extensive are these developments that a new mathematical periodical devoted exclusively to inequalities will soon appear; this is the Journal of Inequalities and Applications, to be edited by R. P. Agar wal. Nowadays it is difficult to follow all these developments and because of lack of communication between different groups of specialists many results are often rediscovered several times. Surveys of the present state of the art are therefore in dispensable not only to mathematicians but to the scientific community at large. The study of inequalities reflects the many and various aspects of mathemat ics. There is on the one hand the systematic search for the basic principles and the study of inequalities for their own sake. On the other hand the subject is a source of ingenious ideas and methods that give rise to seemingly elementary but nevertheless serious and challenging problems. There are many applications in a wide variety of fields from mathematical physics to biology and economics."
Chapter 1 The algebraic prerequisites for the book are covered here and in the appendix. This chapter should be used as reference material and should be consulted as needed. A systematic treatment of algebras, coalgebras, bialgebras, Hopf algebras, and represen tations of these objects to the extent needed for the book is given. The material here not specifically cited can be found for the most part in Sweedler, 1969] in one form or another, with a few exceptions. A great deal of emphasis is placed on the coalgebra which is the dual of n x n matrices over a field. This is the most basic example of a coalgebra for our purposes and is at the heart of most algebraic constructions described in this book. We have found pointed bialgebras useful in connection with solving the quantum Yang-Baxter equation. For this reason we develop their theory in some detail. The class of examples described in Chapter 6 in connection with the quantum double consists of pointed Hopf algebras. We note the quantized enveloping algebras described Hopf algebras. Thus for many reasons pointed bialgebras are elsewhere are pointed of fundamental interest in the study of the quantum Yang-Baxter equation and objects quantum groups."
This book presents an account of recent results on the theory of representations and the harmonic analysis of free groups. It emphasizes the analogy with the theory of representations of noncompact semisimple Lie groups and restricts the focus to a class of irreducible unitary representations.
This volume explores the rich interplay between number theory and wireless communications, reviewing the surprisingly deep connections between these fields and presenting new research directions to inspire future research. The contributions of this volume stem from the Workshop on Interactions between Number Theory and Wireless Communication held at the University of York in 2016. The chapters, written by leading experts in their respective fields, provide direct overviews of highly exciting current research developments. The topics discussed include metric Diophantine approximation, geometry of numbers, homogeneous dynamics, algebraic lattices and codes, network and channel coding, and interference alignment. The book is edited by experts working in number theory and communication theory. It thus provides unique insight into key concepts, cutting-edge results, and modern techniques that play an essential role in contemporary research. Great effort has been made to present the material in a manner that is accessible to new researchers, including PhD students. The book will also be essential reading for established researchers working in number theory or wireless communications looking to broaden their outlook and contribute to this emerging interdisciplinary area.
This book follows a conversational approach in five dozen stories that provide an insight into the colorful world of financial mathematics and financial markets in a relaxed, accessible and entertaining form. The authors present various topics such as returns, real interest rates, present values, arbitrage, replication, options, swaps, the Black-Scholes formula and many more. The readers will learn how to discover, analyze, and deal with the many financial mathematical decisions the daily routine constantly demands. The book covers a wide field in terms of scope and thematic diversity. Numerous stories are inspired by the fields of deterministic financial mathematics, option valuation, portfolio optimization and actuarial mathematics. The book also contains a collection of basic concepts and formulas of financial mathematics and of probability theory. Thus, also readers new to the subject will be provided with all the necessary information to verify the calculations.
This book presents a novel theory of multibody dynamics with distinct features, including unified continuum theory, multiscale modeling technology of multibody system, and motion formalism implementation. All these features together with the introductions of fundamental concepts of vector, dual vector, tensor, dual tensor, recursive descriptions of joints, and the higher-order implicit solvers formulate the scope of the bookâs content. In this book, a multibody system is defined as a set consisted of flexible and rigid bodies which are connected by any kinds of joints or constraints to achieve the desired motion. Generally, the motion of multibody system includes the translation and rotation; it is more efficient to describe the motion by using the dual vector or dual tensor directly instead of defining two types of variables, the translation and rotation separately. Furthermore, this book addresses the detail of motion formalism and its finite element implementation of the solid, shell-like, and beam-like structures. It also introduces the fundamental concepts of mechanics, such as the definition of vector, dual vector, tensor, and dual tensor, briefly. Without following the Einstein summation convention, the first- and second-order tensor operations in this book are depicted by linear algebraic operation symbols of row array, column array, and two-dimensional matrix, making these operations easier to understand. In addition, for the integral of governing equations of motion, a set of ordinary differential equations for the finite element-based discrete system, the book discussed the implementation of implicit solvers in detail and introduced the well-developed RADAU IIA algorithms based on post-error estimation to make the contents of the book complete. The intended readers of this book are senior engineers and graduate students in related engineering fields.
This updated edition of this classic book is devoted to ordinary representation theory and is addressed to finite group theorists intending to study and apply character theory. It contains many exercises and examples, and the list of problems contains a number of open questions.
0.1. General remarks. For any algebraic system A, the set SubA of all subsystems of A partially ordered by inclusion forms a lattice. This is the subsystem lattice of A. (In certain cases, such as that of semigroups, in order to have the right always to say that SubA is a lattice, we have to treat the empty set as a subsystem.) The study of various inter-relationships between systems and their subsystem lattices is a rather large field of investigation developed over many years. This trend was formed first in group theory; basic relevant information up to the early seventies is contained in the book [Suz] and the surveys [K Pek St], [Sad 2], [Ar Sad], there is also a quite recent book [Schm 2]. As another inspiring source, one should point out a branch of mathematics to which the book [Baer] was devoted. One of the key objects of examination in this branch is the subspace lattice of a vector space over a skew field. A more general approach deals with modules and their submodule lattices. Examining subsystem lattices for the case of modules as well as for rings and algebras (both associative and non-associative, in particular, Lie algebras) began more than thirty years ago; there are results on this subject also for lattices, Boolean algebras and some other types of algebraic systems, both concrete and general. A lot of works including several surveys have been published here.
The grade-saving Algebra I companion, with hundreds of additional practice problems online Algebra I Workbook For Dummies is your solution to the Algebra brain-block. With hundreds of practice and example problems mapped to the typical high school Algebra class, you'll crack the code in no time! Each problem includes a full explanation so you can see where you went wrong or right every step of the way. From fractions to FOIL and everything in between, this guide will help you grasp the fundamental concepts you'll use in every other math class you'll ever take. This new third edition includes access to an online test bank, where you'll find bonus chapter quizzes to help you test your understanding and pinpoint areas in need of review. Whether you're preparing for an exam or seeking a start-to-finish study aid, this workbook is your ticket to acing algebra. * Master basic operations and properties to solve any problem * Simplify expressions with confidence * Conquer factoring and wrestle equations into submission * Reinforce learning with online chapter quizzes Algebra I is a fundamentally important class. What you learn here will follow you throughout Algebra II, Trigonometry, Calculus, and beyond, including Chemistry, Physics, Biology, and more. Practice really does make perfect and this guide provides plenty of it. Study, practice, and score high!
This volume is dedicated to Bill Helton on the occasion of his sixty fifth birthday. It contains biographical material, a list of Bill's publications, a detailed survey of Bill's contributions to operator theory, optimization and control and 19 technical articles. Most of the technical articles are expository and should serve as useful introductions to many of the areas which Bill's highly original contributions have helped to shape over the last forty odd years. These include interpolation, Szegoe limit theorems, Nehari problems, trace formulas, systems and control theory, convexity, matrix completion problems, linear matrix inequalities and optimization. The book should be useful to graduate students in mathematics and engineering, as well as to faculty and individuals seeking entry level introductions and references to the indicated topics. It can also serve as a supplementary text to numerous courses in pure and applied mathematics and engineering, as well as a source book for seminars. |
![]() ![]() You may like...
Algebras, Lattices, Varieties - Volume…
Ralph S Freese, Ralph N. McKenzie, …
Paperback
R3,161
Discovery Miles 31 610
|