![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra
Optimization is the act of obtaining the "best" result under given circumstances. In design, construction, and maintenance of any engineering system, engineers must make technological and managerial decisions to minimize either the effort or cost required or to maximize benefits. There is no single method available for solving all optimization problems efficiently. Several optimization methods have been developed for different types of problems. The optimum-seeking methods are mathematical programming techniques (specifically, nonlinear programming techniques). Nonlinear Optimization: Models and Applications presents the concepts in several ways to foster understanding. Geometric interpretation: is used to re-enforce the concepts and to foster understanding of the mathematical procedures. The student sees that many problems can be analyzed, and approximate solutions found before analytical solutions techniques are applied. Numerical approximations: early on, the student is exposed to numerical techniques. These numerical procedures are algorithmic and iterative. Worksheets are provided in Excel, MATLAB(R), and Maple(TM) to facilitate the procedure. Algorithms: all algorithms are provided with a step-by-step format. Examples follow the summary to illustrate its use and application. Nonlinear Optimization: Models and Applications: Emphasizes process and interpretation throughout Presents a general classification of optimization problems Addresses situations that lead to models illustrating many types of optimization problems Emphasizes model formulations Addresses a special class of problems that can be solved using only elementary calculus Emphasizes model solution and model sensitivity analysis About the author: William P. Fox is an emeritus professor in the Department of Defense Analysis at the Naval Postgraduate School. He received his Ph.D. at Clemson University and has taught at the United States Military Academy and at Francis Marion University where he was the chair of mathematics. He has written many publications, including over 20 books and over 150 journal articles. Currently, he is an adjunct professor in the Department of Mathematics at the College of William and Mary. He is the emeritus director of both the High School Mathematical Contest in Modeling and the Mathematical Contest in Modeling.
The Yang-Mills theory of gauge interactions is a prime example of interdisciplinary mathematics and advanced physics. Its historical development is a fascinating window into the ongoing struggle of mankind to understand nature. The discovery of gauge fields and their properties is the most formidable landmark of modern physics. The expression of the gauge field strength as the curvature associated to a given connection, places quantum field theory in the same geometrical footing as the gravitational field of general relativity which is naturally written in geometrical terms. The understanding of such geometrical property may help one day to write a unified field theory starting from symmetry principles. Of course, there are remarkable differences between the standard gauge fields and the gravitational field, which must be understood by mathematicians and physicists before attempting such unification. In particular, it is important to understand why gravitation is not a standard gauge field. This book presents an account of the geometrical properties of gauge field theory, while trying to keep the equilibrium between mathematics and physics. At the end we will introduce a similar approach to the gravitational field.
Originally published in 1975, this book reviews the major personality theories influential at the time, including those of Freud, Kelly, Cattell, and Eysenck, and presents the main assessment techniques associated with them. It also discusses their application in such fields as abnormal psychology, diagnosis, psychotherapy, education and criminology. The authors find none of the theories completely satisfactory, but pinpoint important successes and suggest a promising new approach.
Algebra & Geometry: An Introduction to University Mathematics, Second Edition provides a bridge between high school and undergraduate mathematics courses on algebra and geometry. The author shows students how mathematics is more than a collection of methods by presenting important ideas and their historical origins throughout the text. He incorporates a hands-on approach to proofs and connects algebra and geometry to various applications. The text focuses on linear equations, polynomial equations, and quadratic forms. The first few chapters cover foundational topics, including the importance of proofs and a discussion of the properties commonly encountered when studying algebra. The remaining chapters form the mathematical core of the book. These chapters explain the solutions of different kinds of algebraic equations, the nature of the solutions, and the interplay between geometry and algebra. New to the second edition Several updated chapters, plus an all-new chapter discussing the construction of the real numbers by means of approximations by rational numbers Includes fifteen short 'essays' that are accessible to undergraduate readers, but which direct interested students to more advanced developments of the material Expanded references Contains chapter exercises with solutions provided online at www.routledge.com/9780367563035
* The first book of its kind to approach the topic of humor from a social psychological perspective. * Includes contributions from leading international scholars to offer a broad, global overview of the social psychology of humor. * Focuses on current, cutting-edge research to provide future directions in the field for years to come.
Linear algebra is an extremely versatile and useful subject. It rewards those who study it with powerful computational tools, lessons about how mathematical theory is built, examples for later study in other classes, and much more. Functional Linear Algebra is a unique text written to address the need for a one-term linear algebra course where students have taken only calculus. It does not assume students have had a proofs course. The text offers the following approaches: More emphasis is placed on the idea of a linear function, which is used to motivate the study of matrices and their operations. This should seem natural to students after the central role of functions in calculus. Row reduction is moved further back in the semester and vector spaces are moved earlier to avoid an artificial feeling of separation between the computational and theoretical aspects of the course. Chapter 0 offers applications from engineering and the sciences to motivate students by revealing how linear algebra is used. Vector spaces are developed over R, but complex vector spaces are discussed in Appendix A.1. Computational techniques are discussed both by hand and using technology. A brief introduction to Mathematica is provided in Appendix A.2. As readers work through this book, it is important to understand the basic ideas, definitions, and computational skills. Plenty of examples and problems are provided to make sure readers can practice until the material is thoroughly grasped. Author Dr. Hannah Robbins is an associate professor of mathematics at Roanoke College, Salem, VA. Formerly a commutative algebraist, she now studies applications of linear algebra and assesses teaching practices in calculus. Outside the office, she enjoys hiking and playing bluegrass bass.
The book presents qualitative results for different classes of fractional equations, including fractional functional differential equations, fractional impulsive differential equations, and fractional impulsive functional differential equations, which have not been covered by other books. It manifests different constructive methods by demonstrating how these techniques can be applied to investigate qualitative properties of the solutions of fractional systems. Since many applications have been included, the demonstrated techniques and models can be used in training students in mathematical modeling and in the study and development of fractional-order models.
Iterative processes are the tools used to generate sequences approximating solutions of equations describing real life problems. Intended for researchers in computational sciences and as a reference book for advanced computational method in nonlinear analysis, this book is a collection of the recent results on the convergence analysis of numerical algorithms in both finite-dimensional and infinite-dimensional spaces and presents several applications and connections with fixed point theory. It contains an abundant and updated bibliography and provides comparisons between various investigations made in recent years in the field of computational nonlinear analysis. The book also provides recent advancements in the study of iterative procedures and can be used as a source to obtain the proper method to use in order to solve a problem. The book assumes a basic background in Mathematical Statistics, Linear Algebra and Numerical Analysis and may be used as a self-study reference or as a supplementary text for an advanced course in Biosciences or Applied Sciences. Moreover, the newest techniques used to study the dynamics of iterative methods are described and used in the book and they are compared with the classical ones.
The Psychology of Political Polarization was inspired by the notion that, to understand the momentum of radical political movements, it is important to understand the attitudes of individual citizens who support such movements. Leading political psychologists have contributed to this important book, in which they share their latest ideas about political polarization - a complex phenomenon that cannot be traced back to a single cause, and that is associated with intolerance, overconfidence, and irrational beliefs. The book explores the basis of political polarization as being how citizens think and feel about people with a different worldview, how they perceive minority groups, and how much they trust leaders and experts on pressing societal issues such as climate change, health, international relations, and poverty. The chapters are organized into two sections that examine what psychological processes and what social factors contribute to polarization among regular citizens. The book also describes practical strategies and interventions to depolarize people. The book offers a state-of-the-art introduction to the psychology of political polarization which will appeal to the academic market and political professionals.
The book reviews inequalities for weighted entry sums of matrix powers. Applications range from mathematics and CS to pure sciences. It unifies and generalizes several results for products and powers of sesquilinear forms derived from powers of Hermitian, positive-semidefinite, as well as nonnegative matrices. It shows that some inequalities are valid only in specific cases. How to translate the Hermitian matrix results into results for alternating powers of general rectangular matrices? Inequalities that compare the powers of the row and column sums to the row and column sums of the matrix powers are refined for nonnegative matrices. Lastly, eigenvalue bounds and derive results for iterated kernels are improved.
Scientific Computing with MATLAB (R), Second Edition improves students' ability to tackle mathematical problems. It helps students understand the mathematical background and find reliable and accurate solutions to mathematical problems with the use of MATLAB, avoiding the tedious and complex technical details of mathematics. This edition retains the structure of its predecessor while expanding and updating the content of each chapter. The book bridges the gap between problems and solutions through well-grouped topics and clear MATLAB example scripts and reproducible MATLAB-generated plots. Students can effortlessly experiment with the scripts for a deep, hands-on exploration. Each chapter also includes a set of problems to strengthen understanding of the material.
Understanding maths has never been easier. Combining bold, elegant graphics with easy-to-understand text, Simply Maths is the perfect introduction to the subject for those who are short of time but hungry for knowledge. Covering more than 90 key mathematical concepts from prime numbers and fractions to quadratic equations and probability experiments, each pared-back, single-page entry explains the concept more clearly than ever before. Organized by major themes - number theory and systems; calculations; geometry; algebra; graphs; ratio and proportion; measurement; probability and statistics; and calculus - entries explain the essentials of each key mathematical theory with simple clarity and for ease of understanding. Whether you are studying maths at school or college, or simply want a jargon-free overview of the subject, this indispensable guide is packed with everything you need to understand the basics quickly and easily.
This work is at the crossroads of a number of mathematical areas, including algebraic geometry, several complex variables, differential geometry, and representation theory. It is the first book to cover complex tori, among the simplest of complex manifolds, which are important to research in the above areas. The book gives a systematic approach to the theory, presents new results, and includes an up-to-date bibliography.
This book intends to provide material for a graduate course on computational commutative algebra and algebraic geometry, highlighting potential applications in cryptography. Also, the topics in this book could form the basis of a graduate course that acts as a segue between an introductory algebra course and the more technical topics of commutative algebra and algebraic geometry.This book contains a total of 124 exercises with detailed solutions as well as an important number of examples that illustrate definitions, theorems, and methods. This is very important for students or researchers who are not familiar with the topics discussed. Experience has shown that beginners who want to take their first steps in algebraic geometry are usually discouraged by the difficulty of the proposed exercises and the absence of detailed answers. Therefore, exercises (and their solutions) as well as examples occupy a prominent place in this course.This book is not designed as a comprehensive reference work, but rather as a selective textbook. The many exercises with detailed answers make it suitable for use in both a math or computer science course.
This book intends to provide material for a graduate course on computational commutative algebra and algebraic geometry, highlighting potential applications in cryptography. Also, the topics in this book could form the basis of a graduate course that acts as a segue between an introductory algebra course and the more technical topics of commutative algebra and algebraic geometry.This book contains a total of 124 exercises with detailed solutions as well as an important number of examples that illustrate definitions, theorems, and methods. This is very important for students or researchers who are not familiar with the topics discussed. Experience has shown that beginners who want to take their first steps in algebraic geometry are usually discouraged by the difficulty of the proposed exercises and the absence of detailed answers. Therefore, exercises (and their solutions) as well as examples occupy a prominent place in this course.This book is not designed as a comprehensive reference work, but rather as a selective textbook. The many exercises with detailed answers make it suitable for use in both a math or computer science course.
* The first book of its kind to approach the topic of humor from a social psychological perspective. * Includes contributions from leading international scholars to offer a broad, global overview of the social psychology of humor. * Focuses on current, cutting-edge research to provide future directions in the field for years to come.
This book deals with analytic treatments of Markov processes. Symmetric Dirichlet forms and their associated Markov processes are important and powerful tools in the theory of Markov processes and their applications. The theory is well studied and used in various fields. In this monograph, we intend to generalize the theory to non-symmetric and time dependent semi-Dirichlet forms. By this generalization, we can cover the wide class of Markov processes and analytic theory which do not possess the dual Markov processes. In particular, under the semi-Dirichlet form setting, the stochastic calculus is not well established yet. In this monograph, we intend to give an introduction to such calculus. Furthermore, basic examples different from the symmetric cases are given. The text is written for graduate students, but also researchers.
Drawing on rich classroom observations of educators teaching in China and the U.S., this book details an innovative and effective approach to teaching algebra at the elementary level, namely, "teaching through example-based problem solving" (TEPS). Recognizing young children's particular cognitive and developmental capabilities, this book powerfully argues for the importance of infusing algebraic thinking into early grade mathematics teaching and illustrates how this has been achieved by teachers in U.S. and Chinese contexts. Documenting best practice and students' responses to example-based instruction, the text demonstrates that this TEPS approach - which involves the use of worked examples, representations, and deep questions - helps students learn and master fundamental mathematical ideas, making it highly effective in developing algebraic readiness and mathematical understanding. This text will benefit post-graduate students, researchers, and academics in the fields of mathematics, STEM, and elementary education, as well as algebra research more broadly. Those interested in teacher education, classroom practice, and developmental and cognitive psychology will also find this volume of interest.
The recent rise of populist politics represent a major challenge for liberal democracies. This important book explores the psychological reasons for the rise of populism, featuring contributions from leading international researchers in the fields of psychology and political science. Unlike liberal democracy based on the Enlightenment values of individual freedom, autonomy and rationality, both right-wing and left-wing populism offer collectivist, autocratic formulations reminiscent of the evolutionary history and tribal instincts of our species. The book offers a comprehensive overview of the psychology of populism, covering such phenomena as identity seeking, anger and fear, collective narcissism, grievance, norms, perceptions of powerlessness and deprivation, authoritarianism, nationalism, radicalism, propaganda and persuasion, ethnocentrism, xenophobia and the effects of globalization. The book is divided into four parts. Part I deals with the motivational and emotional factors that attract voters to populist causes, and the human needs and values that populist movements satisfy. Part II analyzes the cognitive features of populist appeals, especially their emphasis on simplicity, epistemic certainty and moral absolutism. Part III turns to one of the defining features of populism: its offer of a powerful tribal identity and collectivist ideology that provide meaning and personal significance to its followers. Finally, in Part IV, the propaganda tactics used by populist movements are analysed, including the role of charismatic leadership, authoritarianism, and nationalism and the use of conspiracy narratives and persuasive strategies. This is fascinating reading on a highly topical issue. The book will be of interest to students, researchers, and applied professionals in all areas of psychology and the social sciences as a textbook or reference book, and to anyone interested in the global rise of populism. Please follow this link for an insightful interview by one of the editors of the book - Joseph P. Forgas: https://www.routledge.com/blog/article/editor-interview-the-psychology-of-populism We have also created a short promotional video for the book here - https://www.youtube.com/watch?v=iK1BEF8WyMA.
The recent rise of populist politics represent a major challenge for liberal democracies. This important book explores the psychological reasons for the rise of populism, featuring contributions from leading international researchers in the fields of psychology and political science. Unlike liberal democracy based on the Enlightenment values of individual freedom, autonomy and rationality, both right-wing and left-wing populism offer collectivist, autocratic formulations reminiscent of the evolutionary history and tribal instincts of our species. The book offers a comprehensive overview of the psychology of populism, covering such phenomena as identity seeking, anger and fear, collective narcissism, grievance, norms, perceptions of powerlessness and deprivation, authoritarianism, nationalism, radicalism, propaganda and persuasion, ethnocentrism, xenophobia and the effects of globalization. The book is divided into four parts. Part I deals with the motivational and emotional factors that attract voters to populist causes, and the human needs and values that populist movements satisfy. Part II analyzes the cognitive features of populist appeals, especially their emphasis on simplicity, epistemic certainty and moral absolutism. Part III turns to one of the defining features of populism: its offer of a powerful tribal identity and collectivist ideology that provide meaning and personal significance to its followers. Finally, in Part IV, the propaganda tactics used by populist movements are analysed, including the role of charismatic leadership, authoritarianism, and nationalism and the use of conspiracy narratives and persuasive strategies. This is fascinating reading on a highly topical issue. The book will be of interest to students, researchers, and applied professionals in all areas of psychology and the social sciences as a textbook or reference book, and to anyone interested in the global rise of populism. Please follow this link for an insightful interview by one of the editors of the book - Joseph P. Forgas: https://www.routledge.com/blog/article/editor-interview-the-psychology-of-populism We have also created a short promotional video for the book here - https://www.youtube.com/watch?v=iK1BEF8WyMA.
This unique book's subject is meanders (connected, oriented, non-self-intersecting planar curves intersecting the horizontal line transversely) in the context of dynamical systems. By interpreting the transverse intersection points as vertices and the arches arising from these curves as directed edges, meanders are introduced from the graphtheoretical perspective. Supplementing the rigorous results, mathematical methods, constructions, and examples of meanders with a large number of insightful figures, issues such as connectivity and the number of connected components of meanders are studied in detail with the aid of collapse and multiple collapse, forks, and chambers. Moreover, the author introduces a large class of Morse meanders by utilizing the right and left one-shift maps, and presents connections to Sturm global attractors, seaweed and Frobenius Lie algebras, and the classical Yang-Baxter equation. Contents Seaweed Meanders Meanders Morse Meanders and Sturm Global Attractors Right and Left One-Shifts Connection Graphs of Type I, II, III and IV Meanders and the Temperley-Lieb Algebra Representations of Seaweed Lie Algebras CYBE and Seaweed Meanders
Multivariable Calculus with Mathematica is a textbook addressing the calculus of several variables. Instead of just using Mathematica to directly solve problems, the students are encouraged to learn the syntax and to write their own code to solve problems. This not only encourages scientific computing skills but at the same time stresses the complete understanding of the mathematics. Questions are provided at the end of the chapters to test the student's theoretical understanding of the mathematics, and there are also computer algebra questions which test the student's ability to apply their knowledge in non-trivial ways. Features Ensures that students are not just using the package to directly solve problems, but learning the syntax to write their own code to solve problems Suitable as a main textbook for a Calculus III course, and as a supplementary text for topics scientific computing, engineering, and mathematical physics Written in a style that engages the students' interest and encourages the understanding of the mathematical ideas
When it comes to relationships, there's no shortage of advice from self-help 'experts', pick-up artists, and glossy magazines. But modern-day myths of attraction often have no basis in fact or - worse - are rooted in little more than misogyny. Based on science rather than self-help cliches, psychologist Viren Swami debunks these myths and draws on cutting-edge research to provide a ground-breaking and evidence-based account of relationship formation. At the core of this book is a very simple idea: there are no 'laws of attraction', no fool-proof methods or strategies for getting someone to date you. But this isn't to say that there's nothing to be gained from studying attraction. Based on science rather than self-help cliches, Attraction Explained looks at how factors such as geography, physical appearance, reciprocity, and similarity affect who we fall for and why. With updated statistics, this second edition also includes new content on online dating, queer relationships, racism in dating, shyness, and individual differences. It remains an engaging and accessible introduction to attraction relationship formation for professionals, students, and general readers.
This introduction to cryptography employs a programming-oriented approach to study the most important cryptographic schemes in current use and the main cryptanalytic attacks against them. Discussion of the theoretical aspects, emphasizing precise security definitions based on methodological tools such as complexity and randomness, and of the mathematical aspects, with emphasis on number-theoretic algorithms and their applications to cryptography and cryptanalysis, is integrated with the programming approach, thus providing implementations of the algorithms and schemes as well as examples of realistic size. A distinctive feature of the author's approach is the use of Maple as a programming environment in which not just the cryptographic primitives but also the most important cryptographic schemes are implemented following the recommendations of standards bodies such as NIST, with many of the known cryptanalytic attacks implemented as well. The purpose of the Maple implementations is to let the reader experiment and learn, and for this reason the author includes numerous examples. The book discusses important recent subjects such as homomorphic encryption, identity-based cryptography and elliptic curve cryptography. The algorithms and schemes which are treated in detail and implemented in Maple include AES and modes of operation, CMAC, GCM/GMAC, SHA-256, HMAC, RSA, Rabin, Elgamal, Paillier, Cocks IBE, DSA and ECDSA. In addition, some recently introduced schemes enjoying strong security properties, such as RSA-OAEP, Rabin-SAEP, Cramer--Shoup, and PSS, are also discussed and implemented. On the cryptanalysis side, Maple implementations and examples are used to discuss many important algorithms, including birthday and man-in-the-middle attacks, integer factorization algorithms such as Pollard's rho and the quadratic sieve, and discrete log algorithms such as baby-step giant-step, Pollard's rho, Pohlig--Hellman and the index calculus method. This textbook is suitable for advanced undergraduate and graduate students of computer science, engineering and mathematics, satisfying the requirements of various types of courses: a basic introductory course; a theoretically oriented course whose focus is on the precise definition of security concepts and on cryptographic schemes with reductionist security proofs; a practice-oriented course requiring little mathematical background and with an emphasis on applications; or a mathematically advanced course addressed to students with a stronger mathematical background. The main prerequisite is a basic knowledge of linear algebra and elementary calculus, and while some knowledge of probability and abstract algebra would be helpful, it is not essential because the book includes the necessary background from these subjects and, furthermore, explores the number-theoretic material in detail. The book is also a comprehensive reference and is suitable for self-study by practitioners and programmers."
In the 2012-13 academic year, the Mathematical Sciences Research Institute, Berkeley, hosted programs in Commutative Algebra (Fall 2012 and Spring 2013) and Noncommutative Algebraic Geometry and Representation Theory (Spring 2013). There have been many significant developments in these fields in recent years; what is more, the boundary between them has become increasingly blurred. This was apparent during the MSRI program, where there were a number of joint seminars on subjects of common interest: birational geometry, D-modules, invariant theory, matrix factorizations, noncommutative resolutions, singularity categories, support varieties, and tilting theory, to name a few. These volumes reflect the lively interaction between the subjects witnessed at MSRI. The Introductory Workshops and Connections for Women Workshops for the two programs included lecture series by experts in the field. The volumes include a number of survey articles based on these lectures, along with expository articles and research papers by participants of the programs. Volume 2 focuses on the most recent research. |
You may like...
Elementary Treatise on Mechanics - for…
William G (William Guy) 1820- Peck
Hardcover
R887
Discovery Miles 8 870
Video Workbook with the Math Coach for…
Jamie Blair, John Tobey, …
Paperback
R1,469
Discovery Miles 14 690
The Classification of the Finite Simple…
Inna Capdeboscq, Daniel Gorenstein, …
Paperback
R2,507
Discovery Miles 25 070
|