![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Algebra
* Includes interdisciplinary contributions and brings together research on a range of extreme behaviors in one volume, by making theoretical links between different contexts * Explores the brain, hormones, and behaviour to offer insights into the mechanisms and processes that enable extremism to explain their occurrence and the conditions under which they may be likely to emerge * Ideal reading for high-level students taking courses on extremism, academics, and professionals dealing with extreme behavior
The Event of Psychopoetics overviews and investigates the notion of psychopoetics, a sociopsychological event that involves re-creative slips and that emerges under certain cultural conditions and power relations in the context of everyday interaction and through certain modes of dialoguing and conversing. This transdisciplinary text takes the reader through the thought processes of Deleuze, Guattari, Agamben, Maffesoli, Foucault, Butler, Haraway, and Braidotti, among others, addressing debates that are integral to the critique of psychology and its devices of subjectivization and normalization. Garcia takes a unique approach by reflecting on how psychopoetics contrasts institutionalized dialogues, while constantly emphasizing the generative and transformative potency of social worlds effectuated in the impetuous play of poetics. The book combines the rigor of academic research with the creative display of ideas that open diverse, suggestive lines of reflection on everyday interlocution and its possibilities of reinvention, modes of social existence, and the relation between subjectivity and the designs of power. A truly unique reading experience, this book is ideal for students, instructors, and researchers in the fields of philosophy, social psychology and sociological thought, discourse studies, literary theory, and cultural analysis.
The Event of Psychopoetics overviews and investigates the notion of psychopoetics, a sociopsychological event that involves re-creative slips and that emerges under certain cultural conditions and power relations in the context of everyday interaction and through certain modes of dialoguing and conversing. This transdisciplinary text takes the reader through the thought processes of Deleuze, Guattari, Agamben, Maffesoli, Foucault, Butler, Haraway, and Braidotti, among others, addressing debates that are integral to the critique of psychology and its devices of subjectivization and normalization. Garcia takes a unique approach by reflecting on how psychopoetics contrasts institutionalized dialogues, while constantly emphasizing the generative and transformative potency of social worlds effectuated in the impetuous play of poetics. The book combines the rigor of academic research with the creative display of ideas that open diverse, suggestive lines of reflection on everyday interlocution and its possibilities of reinvention, modes of social existence, and the relation between subjectivity and the designs of power. A truly unique reading experience, this book is ideal for students, instructors, and researchers in the fields of philosophy, social psychology and sociological thought, discourse studies, literary theory, and cultural analysis.
This completely revised and corrected version of the well-known Florence notes circulated by the authors together with E. Friedlander examines basic topology, emphasizing homotopy theory. Included is a discussion of Postnikov towers and rational homotopy theory. This is then followed by an in-depth look at differential forms and de Tham's theorem on simplicial complexes. In addition, Sullivan's results on computing the rational homotopy type from forms is presented. New to the Second Edition: *Fully-revised appendices including an expanded discussion of the Hirsch lemma *Presentation of a natural proof of a Serre spectral sequence result *Updated content throughout the book, reflecting advances in the area of homotopy theory With its modern approach and timely revisions, this second edition of Rational Homotopy Theory and Differential Forms will be a valuable resource for graduate students and researchers in algebraic topology, differential forms, and homotopy theory.
This book contains both expository articles and original research in the areas of function theory and operator theory. The contributions include extended versions of some of the lectures by invited speakers at the conference in honor of the memory of Serguei Shimorin at the Mittag-Leffler Institute in the summer of 2018. The book is intended for all researchers in the fields of function theory, operator theory and complex analysis in one or several variables. The expository articles reflecting the current status of several well-established and very dynamical areas of research will be accessible and useful to advanced graduate students and young researchers in pure and applied mathematics, and also to engineers and physicists using complex analysis methods in their investigations.
There is good reason to be excited about Linear Algebra. With the world becoming increasingly digital, Linear Algebra is gaining more and more importance. When we send texts, share video, do internet searches, there are Linear Algebra algorithms in the background that make it work. This concise introduction to Linear Algebra is authored by a leading researcher presents a book that covers all the requisite material for a first course on the topic in a more practical way. The book focuses on the development of the mathematical theory and presents many applications to assist instructors and students to master the material and apply it to their areas of interest, whether it be to further their studies in mathematics, science, engineering, statistics, economics, or other disciplines. Linear Algebra has very appealing features: *It is a solid axiomatic based mathematical theory that is accessible to a large variety of students. *It has a multitude of applications from many different fields, ranging from traditional science and engineering applications to more 'daily life' applications. *It easily allows for numerical experimentation through the use of a variety of readily available software (both commercial and open source). Several suggestions of different software are made. While MATLAB is certainly still a favorite choice, open-source programs such as Sage (especially among algebraists) and the Python libraries are increasingly popular. This text guides the student to try out different programs by providing specific commands.
Features Filled with instructive examples and exercises to help build understanding Suitable for researchers, professionals and students, both in mathematics and computer science Every chapter consists of exercises with solution provided online at www.Routledge.com/9780367720292
This unique text/reference presents a unified approach to the formulation of Gestalt laws for perceptual grouping, and the construction of nested hierarchies by aggregation utilizing these laws. The book also describes the extraction of such constructions from noisy images showing man-made objects and clutter. Each Gestalt operation is introduced in a separate, self-contained chapter, together with application examples and a brief literature review. These are then brought together in an algebraic closure chapter, followed by chapters that connect the method to the data - i.e., the extraction of primitives from images, cooperation with machine-readable knowledge, and cooperation with machine learning. Topics and features: offers the first unified approach to nested hierarchical perceptual grouping; presents a review of all relevant Gestalt laws in a single source; covers reflection symmetry, frieze symmetry, rotational symmetry, parallelism and rectangular settings, contour prolongation, and lattices; describes the problem from all theoretical viewpoints, including syntactic, probabilistic, and algebraic perspectives; discusses issues important to practical application, such as primitive extraction and any-time search; provides an appendix detailing a general adjustment model with constraints. This work offers new insights and proposes novel methods to advance the field of machine vision, which will be of great benefit to students, researchers, and engineers active in this area.
The aim of this book is to present the fundamental theoretical results concerning inference rules in deductive formal systems. Primary attention is focused on: - admissible or permissible inference rules - the derivability of the admissible inference rules - the structural completeness of logics - the bases for admissible and valid inference rules. There is particular emphasis on propositional non-standard logics (primary, superintuitionistic and modal logics) but general logical consequence relations and classical first-order theories are also considered. The book is basically self-contained and special attention has been made to present the material in a convenient manner for the reader. Proofs of results, many of which are not readily available elsewhere, are also included. The book is written at a level appropriate for first-year graduate students in mathematics or computer science. Although some knowledge of elementary logic and universal algebra are necessary, the first chapter includes all the results from universal algebra and logic that the reader needs. For graduate students in mathematics and computer science the book is an excellent textbook.
It is well known that "fuzziness"-informationgranulesand fuzzy sets as one of its formal manifestations- is one of important characteristics of human cognitionandcomprehensionofreality. Fuzzy phenomena existinnature and are encountered quite vividly within human society. The notion of a fuzzy set has been introduced by L. A. , Zadeh in 1965 in order to formalize human concepts, in connection with the representation of human natural language and computing with words. Fuzzy sets and fuzzy logic are used for mod- ing imprecise modes of reasoning that play a pivotal role in the remarkable human abilities to make rational decisions in an environment a?ected by - certainty and imprecision. A growing number of applications of fuzzy sets originated from the "empirical-semantic" approach. From this perspective, we were focused on some practical interpretations of fuzzy sets rather than being oriented towards investigations of the underlying mathematical str- tures of fuzzy sets themselves. For instance, in the context of control theory where fuzzy sets have played an interesting and practically relevant function, the practical facet of fuzzy sets has been stressed quite signi?cantly. However, fuzzy sets can be sought as an abstract concept with all formal underpinnings stemming from this more formal perspective. In the context of applications, it is worth underlying that membership functions do not convey the same meaning at the operational level when being cast in various contexts.
Combinatorial Nullstellensatz is a novel theorem in algebra introduced by Noga Alon to tackle combinatorial problems in diverse areas of mathematics. This book focuses on the applications of this theorem to graph colouring. A key step in the applications of Combinatorial Nullstellensatz is to show that the coefficient of a certain monomial in the expansion of a polynomial is nonzero. The major part of the book concentrates on three methods for calculating the coefficients: Alon-Tarsi orientation: The task is to show that a graph has an orientation with given maximum out-degree and for which the number of even Eulerian sub-digraphs is different from the number of odd Eulerian sub-digraphs. In particular, this method is used to show that a graph whose edge set decomposes into a Hamilton cycle and vertex-disjoint triangles is 3-choosable, and that every planar graph has a matching whose deletion results in a 4-choosable graph. Interpolation formula for the coefficient: This method is in particular used to show that toroidal grids of even order are 3-choosable, r-edge colourable r-regular planar graphs are r-edge choosable, and complete graphs of order p+1, where p is a prime, are p-edge choosable. Coefficients as the permanents of matrices: This method is in particular used in the study of the list version of vertex-edge weighting and to show that every graph is (2,3)-choosable. It is suited as a reference book for a graduate course in mathematics.
This book offers the basics of algebraic number theory for students and others who need an introduction and do not have the time to wade through the voluminous textbooks available. It is suitable for an independent study or as a textbook for a first course on the topic. The author presents the topic here by first offering a brief introduction to number theory and a review of the prerequisite material, then presents the basic theory of algebraic numbers. The treatment of the subject is classical but the newer approach discussed at the end provides a broader theory to include the arithmetic of algebraic curves over finite fields, and even suggests a theory for studying higher dimensional varieties over finite fields. It leads naturally to the Weil conjecture and some delicate questions in algebraic geometry. About the Author Dr. J. S. Chahal is a professor of mathematics at Brigham Young University. He received his Ph.D. from Johns Hopkins University and after spending a couple of years at the University of Wisconsin as a post doc, he joined Brigham Young University as an assistant professor and has been there ever since. He specializes and has published several papers in number theory. For hobbies, he likes to travel and hike. His book, Fundamentals of Linear Algebra, is also published by CRC Press.
This book offers a user friendly, hands-on, and systematic introduction to applied and computational harmonic analysis: to Fourier analysis, signal processing and wavelets; and to their interplay and applications. The approach is novel, and the book can be used in undergraduate courses, for example, following a first course in linear algebra, but is also suitable for use in graduate level courses. The book will benefit anyone with a basic background in linear algebra. It defines fundamental concepts in signal processing and wavelet theory, assuming only a familiarity with elementary linear algebra. No background in signal processing is needed. Additionally, the book demonstrates in detail why linear algebra is often the best way to go. Those with only a signal processing background are also introduced to the world of linear algebra, although a full course is recommended. The book comes in two versions: one based on MATLAB, and one on Python, demonstrating the feasibility and applications of both approaches. Most of the code is available interactively. The applications mainly involve sound and images. The book also includes a rich set of exercises, many of which are of a computational nature.
The parabolic partial differential equations model one of the most important processes in the real-world: diffusion. Whether it is the diffusion of energy in space-time, the diffusion of species in ecology, the diffusion of chemicals in biochemical processes, or the diffusion of information in social networks, diffusion processes are ubiquitous and crucial in the physical and natural world as well as our everyday lives. This book is self-contained and covers key topics such as the Lp theory and Schauder theory, maximum principle, comparison principle, regularity and uniform estimates, initial-boundary value problems of semilinear parabolic scalar equations and weakly coupled parabolic systems, the upper and lower solutions method, monotone properties and long-time behaviours of solutions, convergence of solutions and stability of equilibrium solutions, global solutions and finite time blowup. It also touches on periodic boundary value problems, free boundary problems, and semigroup theory. The book covers major theories and methods of the field, including topics that are useful but hard to find elsewhere. This book is based on tried and tested teaching materials used at the Harbin Institute of Technology over the past ten years. Special care was taken to make the book suitable for classroom teaching as well as for self-study among graduate students. About the Author: Mingxin Wang is Professor of Mathematics at Harbin Institute of Technology, China. He has published ten monographs and textbooks and 260 papers. He is also a supervisor of 30 PhD students.
Originally published in 1992, Channeling is a comprehensive bibliography on the subject of channeling. The book defines channeling as any message received or conveyed from transcendent entities and covers material on the history of channeling, those that have claimed to transcend death, contact with UFOs and contemporary channeling groups. The book acts as a research guide and seeks to outline the historical roots of channeling, explaining its major teachings and considers its significance as a spiritual movement. It provides sources from books, booklets, articles, and ephemeral material and offers a comprehensive list of both primary and secondary materials related to channeling, the bibliography takes the most diverse and useful sources of the time. This volume although published almost 30 years ago, still provides a unique and insightful collection for academics of religion, in particular those researching spiritualism and the occult.
Optimization is the act of obtaining the "best" result under given circumstances. In design, construction, and maintenance of any engineering system, engineers must make technological and managerial decisions to minimize either the effort or cost required or to maximize benefits. There is no single method available for solving all optimization problems efficiently. Several optimization methods have been developed for different types of problems. The optimum-seeking methods are mathematical programming techniques (specifically, nonlinear programming techniques). Nonlinear Optimization: Models and Applications presents the concepts in several ways to foster understanding. Geometric interpretation: is used to re-enforce the concepts and to foster understanding of the mathematical procedures. The student sees that many problems can be analyzed, and approximate solutions found before analytical solutions techniques are applied. Numerical approximations: early on, the student is exposed to numerical techniques. These numerical procedures are algorithmic and iterative. Worksheets are provided in Excel, MATLAB(R), and Maple(TM) to facilitate the procedure. Algorithms: all algorithms are provided with a step-by-step format. Examples follow the summary to illustrate its use and application. Nonlinear Optimization: Models and Applications: Emphasizes process and interpretation throughout Presents a general classification of optimization problems Addresses situations that lead to models illustrating many types of optimization problems Emphasizes model formulations Addresses a special class of problems that can be solved using only elementary calculus Emphasizes model solution and model sensitivity analysis About the author: William P. Fox is an emeritus professor in the Department of Defense Analysis at the Naval Postgraduate School. He received his Ph.D. at Clemson University and has taught at the United States Military Academy and at Francis Marion University where he was the chair of mathematics. He has written many publications, including over 20 books and over 150 journal articles. Currently, he is an adjunct professor in the Department of Mathematics at the College of William and Mary. He is the emeritus director of both the High School Mathematical Contest in Modeling and the Mathematical Contest in Modeling.
The Yang-Mills theory of gauge interactions is a prime example of interdisciplinary mathematics and advanced physics. Its historical development is a fascinating window into the ongoing struggle of mankind to understand nature. The discovery of gauge fields and their properties is the most formidable landmark of modern physics. The expression of the gauge field strength as the curvature associated to a given connection, places quantum field theory in the same geometrical footing as the gravitational field of general relativity which is naturally written in geometrical terms. The understanding of such geometrical property may help one day to write a unified field theory starting from symmetry principles. Of course, there are remarkable differences between the standard gauge fields and the gravitational field, which must be understood by mathematicians and physicists before attempting such unification. In particular, it is important to understand why gravitation is not a standard gauge field. This book presents an account of the geometrical properties of gauge field theory, while trying to keep the equilibrium between mathematics and physics. At the end we will introduce a similar approach to the gravitational field.
Originally published in 1975, this book reviews the major personality theories influential at the time, including those of Freud, Kelly, Cattell, and Eysenck, and presents the main assessment techniques associated with them. It also discusses their application in such fields as abnormal psychology, diagnosis, psychotherapy, education and criminology. The authors find none of the theories completely satisfactory, but pinpoint important successes and suggest a promising new approach.
Algebra & Geometry: An Introduction to University Mathematics, Second Edition provides a bridge between high school and undergraduate mathematics courses on algebra and geometry. The author shows students how mathematics is more than a collection of methods by presenting important ideas and their historical origins throughout the text. He incorporates a hands-on approach to proofs and connects algebra and geometry to various applications. The text focuses on linear equations, polynomial equations, and quadratic forms. The first few chapters cover foundational topics, including the importance of proofs and a discussion of the properties commonly encountered when studying algebra. The remaining chapters form the mathematical core of the book. These chapters explain the solutions of different kinds of algebraic equations, the nature of the solutions, and the interplay between geometry and algebra. New to the second edition Several updated chapters, plus an all-new chapter discussing the construction of the real numbers by means of approximations by rational numbers Includes fifteen short 'essays' that are accessible to undergraduate readers, but which direct interested students to more advanced developments of the material Expanded references Contains chapter exercises with solutions provided online at www.routledge.com/9780367563035
* The first book of its kind to approach the topic of humor from a social psychological perspective. * Includes contributions from leading international scholars to offer a broad, global overview of the social psychology of humor. * Focuses on current, cutting-edge research to provide future directions in the field for years to come.
Linear algebra is an extremely versatile and useful subject. It rewards those who study it with powerful computational tools, lessons about how mathematical theory is built, examples for later study in other classes, and much more. Functional Linear Algebra is a unique text written to address the need for a one-term linear algebra course where students have taken only calculus. It does not assume students have had a proofs course. The text offers the following approaches: More emphasis is placed on the idea of a linear function, which is used to motivate the study of matrices and their operations. This should seem natural to students after the central role of functions in calculus. Row reduction is moved further back in the semester and vector spaces are moved earlier to avoid an artificial feeling of separation between the computational and theoretical aspects of the course. Chapter 0 offers applications from engineering and the sciences to motivate students by revealing how linear algebra is used. Vector spaces are developed over R, but complex vector spaces are discussed in Appendix A.1. Computational techniques are discussed both by hand and using technology. A brief introduction to Mathematica is provided in Appendix A.2. As readers work through this book, it is important to understand the basic ideas, definitions, and computational skills. Plenty of examples and problems are provided to make sure readers can practice until the material is thoroughly grasped. Author Dr. Hannah Robbins is an associate professor of mathematics at Roanoke College, Salem, VA. Formerly a commutative algebraist, she now studies applications of linear algebra and assesses teaching practices in calculus. Outside the office, she enjoys hiking and playing bluegrass bass.
The book presents qualitative results for different classes of fractional equations, including fractional functional differential equations, fractional impulsive differential equations, and fractional impulsive functional differential equations, which have not been covered by other books. It manifests different constructive methods by demonstrating how these techniques can be applied to investigate qualitative properties of the solutions of fractional systems. Since many applications have been included, the demonstrated techniques and models can be used in training students in mathematical modeling and in the study and development of fractional-order models.
Iterative processes are the tools used to generate sequences approximating solutions of equations describing real life problems. Intended for researchers in computational sciences and as a reference book for advanced computational method in nonlinear analysis, this book is a collection of the recent results on the convergence analysis of numerical algorithms in both finite-dimensional and infinite-dimensional spaces and presents several applications and connections with fixed point theory. It contains an abundant and updated bibliography and provides comparisons between various investigations made in recent years in the field of computational nonlinear analysis. The book also provides recent advancements in the study of iterative procedures and can be used as a source to obtain the proper method to use in order to solve a problem. The book assumes a basic background in Mathematical Statistics, Linear Algebra and Numerical Analysis and may be used as a self-study reference or as a supplementary text for an advanced course in Biosciences or Applied Sciences. Moreover, the newest techniques used to study the dynamics of iterative methods are described and used in the book and they are compared with the classical ones.
The Psychology of Political Polarization was inspired by the notion that, to understand the momentum of radical political movements, it is important to understand the attitudes of individual citizens who support such movements. Leading political psychologists have contributed to this important book, in which they share their latest ideas about political polarization - a complex phenomenon that cannot be traced back to a single cause, and that is associated with intolerance, overconfidence, and irrational beliefs. The book explores the basis of political polarization as being how citizens think and feel about people with a different worldview, how they perceive minority groups, and how much they trust leaders and experts on pressing societal issues such as climate change, health, international relations, and poverty. The chapters are organized into two sections that examine what psychological processes and what social factors contribute to polarization among regular citizens. The book also describes practical strategies and interventions to depolarize people. The book offers a state-of-the-art introduction to the psychology of political polarization which will appeal to the academic market and political professionals.
The book reviews inequalities for weighted entry sums of matrix powers. Applications range from mathematics and CS to pure sciences. It unifies and generalizes several results for products and powers of sesquilinear forms derived from powers of Hermitian, positive-semidefinite, as well as nonnegative matrices. It shows that some inequalities are valid only in specific cases. How to translate the Hermitian matrix results into results for alternating powers of general rectangular matrices? Inequalities that compare the powers of the row and column sums to the row and column sums of the matrix powers are refined for nonnegative matrices. Lastly, eigenvalue bounds and derive results for iterated kernels are improved. |
You may like...
A Commentary On Newton's Principia…
John Martin Frederick Wright
Hardcover
R1,048
Discovery Miles 10 480
Video Workbook with the Math Coach for…
Jamie Blair, John Tobey, …
Paperback
R1,469
Discovery Miles 14 690
The Classification of the Finite Simple…
Inna Capdeboscq, Daniel Gorenstein, …
Paperback
R2,507
Discovery Miles 25 070
|