![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra
Larson's ALGEBRA AND TRIGONOMETRY, 9E, International Edition is ideal for a two-term course and is known for delivering sound, consistently structured explanations and carefully written exercises of the mathematical concepts. With the Ninth Edition, the author continues to revolutionize the way students learn material by incorporating more real-world applications, on-going review and innovative technology. How Do You See It? exercises give you practice applying the concepts, and new Summarize features, Checkpoint problems and a Companion Website reinforce understanding of the skill sets to help students better prepare for tests.
This collection contains papers conceptually related to the classical ideas of Sophus Lie (i.e., to Lie groups and Lie algebras). Obviously, it is impos sible to embrace all such topics in a book of reasonable size. The contents of this one reflect the scientific interests of those authors whose activities, to some extent at least, are associated with the International Sophus Lie Center. We have divided the book into five parts in accordance with the basic topics of the papers (although it can be easily seen that some of them may be attributed to several parts simultaneously). The first part (quantum mathematics) combines the papers related to the methods generated by the concepts of quantization and quantum group. The second part is devoted to the theory of hypergroups and Lie hypergroups, which is one of the most important generalizations of the classical concept of locally compact group and of Lie group. A natural harmonic analysis arises on hypergroups, while any abstract transformation of Fourier type is gen erated by some hypergroup (commutative or not). Part III contains papers on the geometry of homogeneous spaces, Lie algebras and Lie superalgebras. Classical problems of the representation theory for Lie groups, as well as for topological groups and semigroups, are discussed in the papers of Part IV. Finally, the last part of the collection relates to applications of the ideas of Sophus Lie to differential equations."
This book is about the interplay between algebraic topology and the theory of infinite discrete groups. It is a hugely important contribution to the field of topological and geometric group theory, and is bound to become a standard reference in the field. To keep the length reasonable and the focus clear, the author assumes the reader knows or can easily learn the necessary algebra, but wants to see the topology done in detail. The central subject of the book is the theory of ends. Here the author adopts a new algebraic approach which is geometric in spirit.
About 60 years ago, R. Brauer introduced "block theory"; his purpose was to study the group algebra kG of a finite group G over a field k of nonzero characteristic p: any indecomposable two-sided ideal that also is a direct summand of kG determines a G-block.But the main discovery of Brauer is perhaps the existence of families of infinitely many nonisomorphic groups having a "common block"; i.e., blocks having mutually isomorphic "source algebras".In this book, based on a course given by the author at Wuhan University in 1999, all the concepts mentioned are introduced, and all the proofs are developed completely. Its main purpose is the proof of the existence and the uniqueness of the "hyperfocal subalgebra" in the source algebra. This result seems fundamental in block theory; for instance, the structure of the source algebra of a nilpotent block, an important fact in block theory, can be obtained as a corollary. The exceptional layout of this bilingual edition featuring 2 columns per page (one English, one Chinese) sharing the displayed mathematical formulas is the joint achievement of the author and A. Arabia.
The most practical, complete, and accessible guide for understanding algebra If you want to make sense of algebra, check out Practical Algebra: A Self-Teaching Guide. Written by two experienced classroom teachers, this Third Edition is completely revised to align with the Common Core Algebra I math standards used in many states. You'll get an overview of solving linear and quadratic equations, using ratios and proportions, decoding word problems, graphing and interpreting functions, modeling the real world with statistics, and other concepts found in today's algebra courses. This book also contains a brief review of pre-algebra topics, including arithmetic and fractions. It has concrete strategies that help diverse students to succeed, such as: over 500 images and tables that illustrate important concepts over 200 model examples with complete solutions almost 1,500 exercises with answers so you can monitor your progress Practical Algebra emphasizes making connections to what you already know and what you'll learn in the future. You'll learn to see algebra as a logical and consistent system of ideas and see how it connects to other mathematical topics. This book makes math more accessible by treating it as a language. It has tips for pronouncing and using mathematical notation, a glossary of commonly used terms in algebra, and a glossary of symbols. Along the way, you'll discover how different cultures around the world over thousands of years developed many of the mathematical ideas we use today. Since students nowadays can use a variety of tools to handle complex modeling tasks, this book contains technology tips that apply no matter what device you're using. It also describes strategies for avoiding common mistakes that students make. By working through Practical Algebra, you'll learn straightforward techniques for solving problems, and understand why these techniques work so you'll retain what you've learned. You (or your students) will come away with better scores on algebra tests and a greater confidence in your ability to do math.
This book explores and highlights the fertile interaction between logic and operator algebras, which in recent years has led to the resolution of several long-standing open problems on C*-algebras. The interplay between logic and operator algebras (C*-algebras, in particular) is relatively young and the author is at the forefront of this interaction. The deep level of scholarship contained in these pages is evident and opens doors to operator algebraists interested in learning about the set-theoretic methods relevant to their field, as well as to set-theorists interested in expanding their view to the non-commutative realm of operator algebras. Enough background is included from both subjects to make the book a convenient, self-contained source for students. A fair number of the exercises form an integral part of the text. They are chosen to widen and deepen the material from the corresponding chapters. Some other exercises serve as a warmup for the latter chapters.
The objective of this book is to provide tools for solving problems which involve cubic number fields. Many such problems can be considered geometrically; both in terms of the geometry of numbers and geometry of the associated cubic Diophantine equations that are similar in many ways to the Pell equation. With over 50 geometric diagrams, this book includes illustrations of many of these topics. The book may be thought of as a companion reference for those students of algebraic number theory who wish to find more examples, a collection of recent research results on cubic fields, an easy-to-understand source for learning about Voronoi's unit algorithm and several classical results which are still relevant to the field, and a book which helps bridge a gap in understanding connections between algebraic geometry and number theory. The exposition includes numerous discussions on calculating with cubic fields including simple continued fractions of cubic irrational numbers, arithmetic using integer matrices, ideal class group computations, lattices over cubic fields, construction of cubic fields with a given discriminant, the search for elements of norm 1 of a cubic field with rational parametrization, and Voronoi's algorithm for finding a system of fundamental units. Throughout, the discussions are framed in terms of a binary cubic form that may be used to describe a given cubic field. This unifies the chapters of this book despite the diversity of their number theoretic topics.
This textbook helps graduate level student to understand easily the linearization of nonlinear control system. Differential geometry is essential to understand the linearization problems of the control nonlinear systems. In this book, the basics of differential geometry needed in linearization are explained on the Euclidean space instead of the manifold for students who are not accustomed to differential geometry. Many Lie algebra formulas, used often in linearization, are also provided with proof. The conditions in the linearization problems are complicated to check because the Lie bracket calculation of vector fields by hand needs much concentration and time. This book provides MATLAB programs for most of the theorems. The book also includes end-of-chapter problems and other pedagogical aids to help understanding and self study.
This self-contained text presents state-of-the-art results on recurrent sequences and their applications in algebra, number theory, geometry of the complex plane and discrete mathematics. It is designed to appeal to a wide readership, ranging from scholars and academics, to undergraduate students, or advanced high school and college students training for competitions. The content of the book is very recent, and focuses on areas where significant research is currently taking place. Among the new approaches promoted in this book, the authors highlight the visualization of some recurrences in the complex plane, the concurrent use of algebraic, arithmetic, and trigonometric perspectives on classical number sequences, and links to many applications. It contains techniques which are fundamental in other areas of math and encourages further research on the topic. The introductory chapters only require good understanding of college algebra, complex numbers, analysis and basic combinatorics. For Chapters 3, 4 and 6 the prerequisites include number theory, linear algebra and complex analysis. The first part of the book presents key theoretical elements required for a good understanding of the topic. The exposition moves on to to fundamental results and key examples of recurrences and their properties. The geometry of linear recurrences in the complex plane is presented in detail through numerous diagrams, which lead to often unexpected connections to combinatorics, number theory, integer sequences, and random number generation. The second part of the book presents a collection of 123 problems with full solutions, illustrating the wide range of topics where recurrent sequences can be found. This material is ideal for consolidating the theoretical knowledge and for preparing students for Olympiads.
Few Americans escape the experience of divorce, either first-hand or through the dissolutions of marriages of friends or relatives. According to the author, mediation offers a good alternative to the strictly adversarial divorce process that was so prevalent before such programs began to emerge. Originally published in 1991, this book was unique at the time in that it not only explores the role of communication in divorce mediation, but it also presents original research to support its claims. A series of empirical studies, it points readers to a more focused set of recommendations about communication than the typical practitioner's "How-to" books. A simulation exercise is also included, so that readers can apply the concepts described and see the results. The main goal of this text is to provide mediators with a language for understanding their own and their disputants' communication patterns, strategies, and tactics - a shortcoming of most other books on this topic when first published.
In the 1960s divorce was increasing around the world and marriage conciliation services were a necessary development to deal with those who wanted to seek help for their problems. Originally published in 1968, the purpose of this title was to give some account of the widely differing types of marital conciliation services operating in Britain and also some other parts of the world at the time. The author, who was based at the National Marriage Guidance Council of Great Britain, first outlines the British services, then presents comparative studies of the services overseas in Australia, New Zealand, Scandinavia and Finland and the United States and Canada. Today it can be read and enjoyed in its historical context.
This book presents generalized Caputo fractional Ostrowski and Gruss-type inequalities involving several Banach algebra valued functions. Furthermore, the author gives generalized Canavati fractional Ostrowski, Opial, Gruss, and Hilbert-Pachpatte-type inequalities for multiple Banach algebra valued functions. By applying the p-Schatten norms over the von Neumann-Schatten classes, the author produces the analogous refined and interesting inequalities. The author provides many applications. This book's results are expected to find applications in many areas of pure and applied mathematics, especially in fractional inequalities and fractional differential equations. Other interesting applications are in applied sciences like geophysics, physics, chemistry, economics, and engineering. This book is appropriate for researchers, graduate students, practitioners, and seminars of the above disciplines, also to be in all science and engineering libraries.
The mathematical theory of Krylov subspace methods with a focus on solving systems of linear algebraic equations is given a detailed treatment in this principles-based book. Starting from the idea of projections, Krylov subspace methods are characterised by their orthogonality and minimisation properties. Projections onto highly nonlinear Krylov subspaces can be linked with the underlying problem of moments, and therefore Krylov subspace methods can be viewed as matching moments model reduction. This allows enlightening reformulations of questions from matrix computations into the language of orthogonal polynomials, Gauss-Christoffel quadrature, continued fractions, and, more generally, of Vorobyev's method of moments. Using the concept of cyclic invariant subspaces, conditions are studied that allow the generation of orthogonal Krylov subspace bases via short recurrences. The results motivate the important practical distinction between Hermitian and non-Hermitian problems. Finally, the book thoroughly addresses the computational cost while using Krylov subspace methods. The investigation includes effects of finite precision arithmetic and focuses on the method of conjugate gradients (CG) and generalised minimal residuals (GMRES) as major examples. There is an emphasis on the way algebraic computations must always be considered in the context of solving real-world problems, where the mathematical modelling, discretisation and computation cannot be separated from each other. The book also underlines the importance of the historical context and demonstrates that knowledge of early developments can play an important role in understanding and resolving very recent computational problems. Many extensive historical notes are included as an inherent part of the text as well as the formulation of some omitted issues and challenges which need to be addressed in future work. This book is applicable to a wide variety of graduate courses on Krylov subspace methods and related subjects, as well as benefiting those interested in the history of mathematics.
This edited collection covers the role of the process observer - a position that enhances the effectiveness of group functioning by observing the process, summarizing the behavior of the group so that the group can learn and, if needed, improve its functioning. There is little guidance on best practices for this role, and in most settings, process observers are forced to rely on whatever previous training they have received in group work to fulfil their role. The first of its kind, this book offers a wealth of resources for the role of group process observer organized in a systematic way. Each contributor focuses on a specific aspect of group process observation, identifying what is currently known on the topic, suggesting best practices, and providing the reader with tools, structures, and guidelines for effective process observation. Students and educators of group work courses will find this book integral as it covers the existing gap in literature on group process observation.
This book explains the group representation theory for quantum theory in the language of quantum theory. As is well known, group representation theory is very strong tool for quantum theory, in particular, angular momentum, hydrogen-type Hamiltonian, spin-orbit interaction, quark model, quantum optics, and quantum information processing including quantum error correction. To describe a big picture of application of representation theory to quantum theory, the book needs to contain the following six topics, permutation group, SU(2) and SU(d), Heisenberg representation, squeezing operation, Discrete Heisenberg representation, and the relation with Fourier transform from a unified viewpoint by including projective representation. Unfortunately, although there are so many good mathematical books for a part of six topics, no book contains all of these topics because they are too segmentalized. Further, some of them are written in an abstract way in mathematical style and, often, the materials are too segmented. At least, the notation is not familiar to people working with quantum theory. Others are good elementary books, but do not deal with topics related to quantum theory. In particular, such elementary books do not cover projective representation, which is more important in quantum theory. On the other hand, there are several books for physicists. However, these books are too simple and lack the detailed discussion. Hence, they are not useful for advanced study even in physics. To resolve this issue, this book starts with the basic mathematics for quantum theory. Then, it introduces the basics of group representation and discusses the case of the finite groups, the symmetric group, e.g. Next, this book discusses Lie group and Lie algebra. This part starts with the basics knowledge, and proceeds to the special groups, e.g., SU(2), SU(1,1), and SU(d). After the special groups, it explains concrete applications to physical systems, e.g., angular momentum, hydrogen-type Hamiltonian, spin-orbit interaction, and quark model. Then, it proceeds to the general theory for Lie group and Lie algebra. Using this knowledge, this book explains the Bosonic system, which has the symmetries of Heisenberg group and the squeezing symmetry by SL(2,R) and Sp(2n,R). Finally, as the discrete version, this book treats the discrete Heisenberg representation which is related to quantum error correction. To enhance readers' undersnding, this book contains 54 figures, 23 tables, and 111 exercises with solutions.
This unique and comprehensive volume provides an up-to-date account of the literature on the subject of determining the structure of rings over which cyclic modules or proper cyclic modules have a finiteness condition or a homological property. The finiteness conditions and homological properties are closely interrelated in the sense that either hypothesis induces the other in some form. This is the first book to bring all of this important material on the subject together. Over the last 25 years or more numerous mathematicians have investigated rings whose factor rings or factor modules have a finiteness condition or a homological property. They made important contributions leading to new directions and questions, which are listed at the end of each chapter for the benefit of future researchers. There is a wealth of material on the topic which is combined in this book, it contains more than 200 references and is not claimed to be exhaustive. This book will appeal to graduate students, researchers, and professionals in algebra with a knowledge of basic noncommutative ring theory, as well as module theory and homological algebra, equivalent to a one-year graduate course in the theory of rings and modules.
Together with "Theory of Operator Algebras I, II" (EMS 124 and 125), this book, written by one of the most prominent researchers in the field of operator algebras, presents the theory of von Neumann algebras and non-commutative integration focusing on the group of automorphisms and the structure analysis. It is is part of the recently developed part of the "Encyclopaedia of Mathematical Sciences" on operator algebras and non-commutative geometry (see http://www.springer.de/math/ems/index.html). The book provides essential and comprehensive information for graduate students and researchers in mathematics and mathematical physics.
This undergraduate textbook promotes an active transition to higher mathematics. Problem solving is the heart and soul of this book: each problem is carefully chosen to demonstrate, elucidate, or extend a concept. More than 300 exercises engage the reader in extensive arguments and creative approaches, while exploring connections between fundamental mathematical topics. Divided into four parts, this book begins with a playful exploration of the building blocks of mathematics, such as definitions, axioms, and proofs. A study of the fundamental concepts of logic, sets, and functions follows, before focus turns to methods of proof. Having covered the core of a transition course, the author goes on to present a selection of advanced topics that offer opportunities for extension or further study. Throughout, appendices touch on historical perspectives, current trends, and open questions, showing mathematics as a vibrant and dynamic human enterprise. This second edition has been reorganized to better reflect the layout and curriculum of standard transition courses. It also features recent developments and improved appendices. An Invitation to Abstract Mathematics is ideal for those seeking a challenging and engaging transition to advanced mathematics, and will appeal to both undergraduates majoring in mathematics, as well as non-math majors interested in exploring higher-level concepts. From reviews of the first edition: Bajnok's new book truly invites students to enjoy the beauty, power, and challenge of abstract mathematics. ... The book can be used as a text for traditional transition or structure courses ... but since Bajnok invites all students, not just mathematics majors, to enjoy the subject, he assumes very little background knowledge. Jill Dietz, MAA ReviewsThe style of writing is careful, but joyously enthusiastic.... The author's clear attitude is that mathematics consists of problem solving, and that writing a proof falls into this category. Students of mathematics are, therefore, engaged in problem solving, and should be given problems to solve, rather than problems to imitate. The author attributes this approach to his Hungarian background ... and encourages students to embrace the challenge in the same way an athlete engages in vigorous practice. John Perry, zbMATH
This book presents an English translation of a classic Russian text on duality theory for Heyting algebras. Written by Georgian mathematician Leo Esakia, the text proved popular among Russian-speaking logicians. This translation helps make the ideas accessible to a wider audience and pays tribute to an influential mind in mathematical logic. The book discusses the theory of Heyting algebras and closure algebras, as well as the corresponding intuitionistic and modal logics. The author introduces the key notion of a hybrid that "crossbreeds" topology (Stone spaces) and order (Kripke frames), resulting in the structures now known as Esakia spaces. The main theorems include a duality between the categories of closure algebras and of hybrids, and a duality between the categories of Heyting algebras and of so-called strict hybrids. Esakia's book was originally published in 1985. It was the first of a planned two-volume monograph on Heyting algebras. But after the collapse of the Soviet Union, the publishing house closed and the project died with it. Fortunately, this important work now lives on in this accessible translation. The Appendix of the book discusses the planned contents of the lost second volume.
Tough Test Questions? Missed Lectures? Not Enough Time? Textbook too pricey? Fortunately, there's Schaum's. This all-in-one-package includes more than 600 fully-solved problems, examples, and practice exercises to sharpen your problem-solving skills. Plus, you will have access to 25 detailed videos featuring math instructors who explain how to solve the most commonly tested problems--it's just like having your own virtual tutor! You'll find everything you need to build confidence, skills, and knowledge for the highest score possible. More than 40 million students have trusted Schaum's to help them succeed in the classroom and on exams. Schaum's is the key to faster learning and higher grades in every subject. Each Outline presents all the essential course information in an easy-to-follow, topic-by-topic format. Helpful tables and illustrations increase your understanding of the subject at hand. Schaum's Outline of Linear Algebra, Sixth Edition features: * Updated content to match the latest curriculum * Over 600 problems with step-by-step solutions * An accessible outline format for quick and easy review * Clear explanations for all linear algebra concepts * Access to revised Schaums.com website and new app with access to 25 problem-solving videos, and more
Over the last three decades representation theory of groups, Lie algebras and associative algebras has undergone a rapid development through the powerful tool of almost split sequences and the Auslander-Reiten quiver. Further insight into the homology of finite groups has illuminated their representation theory. The study of Hopf algebras and non-commutative geometry is another new branch of representation theory which pushes the classical theory further. All this can only be seen in connection with an understanding of the structure of special classes of rings. The aim of this book is to introduce the reader to some modern developments in: Lie algebras, quantum groups, Hopf algebras and algebraic groups; non-commutative algebraic geometry; representation theory of finite groups and cohomology; the structure of special classes of rings.
This open access book provides an extensive treatment of Hardy inequalities and closely related topics from the point of view of Folland and Stein's homogeneous (Lie) groups. The place where Hardy inequalities and homogeneous groups meet is a beautiful area of mathematics with links to many other subjects. While describing the general theory of Hardy, Rellich, Caffarelli-Kohn-Nirenberg, Sobolev, and other inequalities in the setting of general homogeneous groups, the authors pay particular attention to the special class of stratified groups. In this environment, the theory of Hardy inequalities becomes intricately intertwined with the properties of sub-Laplacians and subelliptic partial differential equations. These topics constitute the core of this book and they are complemented by additional, closely related topics such as uncertainty principles, function spaces on homogeneous groups, the potential theory for stratified groups, and the potential theory for general Hoermander's sums of squares and their fundamental solutions. This monograph is the winner of the 2018 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics. As can be attested as the winner of such an award, it is a vital contribution to literature of analysis not only because it presents a detailed account of the recent developments in the field, but also because the book is accessible to anyone with a basic level of understanding of analysis. Undergraduate and graduate students as well as researchers from any field of mathematical and physical sciences related to analysis involving functional inequalities or analysis of homogeneous groups will find the text beneficial to deepen their understanding.
Discovering Abstract Algebra takes an Inquiry-Based Learning approach to the subject, leading students to discover for themselves its main themes and techniques. Concepts are introduced conversationally through extensive examples and student investigation before being formally defined. Students will develop skills in carefully making statements and writing proofs, while they simultaneously build a sense of ownership over the ideas and results. The book has been extensively tested and reinforced at points of common student misunderstanding or confusion, and includes a wealth of exercises at a variety of levels. The contents were deliberately organized to follow the recommendations of the MAA's 2015 Curriculum Guide. The book is ideal for a one- or two-semester course in abstract algebra, and will prepare students well for graduate-level study in algebra.
Contemporary politics is mass-communication politics. Politicians are not only seen and heard, they are seen and heard in close-up through television appearances, speeches, interviews, and on social media. In this book, the authors analyse the ways in which politicians communicate with each other, the media, and the electorate; they also discuss the implications of contemporary political discourse on the democratic process as a whole. Politicians in interviews are typically castigated for their evasiveness. However, microanalytic research shows that there is more to political discourse than this apparent ambiguity. This book reveals how equivocation, interruptions, and personal antagonism can offer valuable insights into a politician's communicative style. The authors review their empirical research not only on political interviews, but also on speeches, parliamentary debates, and political journalism. Further insights include how political speakers interact with their audiences, how party leaders engage in adversarial discourse at PMQs, and how the spoken messages of politicians can be affected by modern journalistic editing techniques. Thereby, this research generates greater awareness of communicative practices in a diverse range of political contexts. While the interviews and parliamentary debates analysed pertain to UK politics, the speeches also draw on the USA, and European and Far Eastern nations. This engaging book is a fascinating resource for students and academics in psychology, politics, communication, and other related disciplines such as sociology and linguistics. The research is also extremely relevant to policy makers and practitioners in politics and political journalism. |
![]() ![]() You may like...
The Classification of the Finite Simple…
Inna Capdeboscq, Daniel Gorenstein, …
Paperback
R2,481
Discovery Miles 24 810
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,968
Discovery Miles 29 680
Theory and Applications of Ordered Fuzzy…
Piotr Prokopowicz, Jacek Czerniak, …
Hardcover
R1,638
Discovery Miles 16 380
|