![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Algebra
With this translation, the classic monograph UEber die Klassenzahl abelscher Zahlkoerper by Helmut Hasse is now available in English for the first time. The book addresses three main topics: class number formulas for abelian number fields; expressions of the class number of real abelian number fields by the index of the subgroup generated by cyclotomic units; and the Hasse unit index of imaginary abelian number fields, the integrality of the relative class number formula, and the class number parity. Additionally, the book includes reprints of works by Ken-ichi Yoshino and Mikihito Hirabayashi, which extend the tables of Hasse unit indices and the relative class numbers to imaginary abelian number fields with conductor up to 100. The text provides systematic and practical methods for deriving class number formulas, determining the unit index and calculating the class number of abelian number fields. A wealth of illustrative examples, together with corrections and remarks on the original work, make this translation a valuable resource for today's students of and researchers in number theory.
The method of exponential sums is a general method enabling the solution of a wide range of problems in the theory of numbers and its applications. This volume presents an exposition of the fundamentals of the theory with the help of examples which show how exponential sums arise and how they are applied in problems of number theory and its applications. The material is divided into three chapters which embrace the classical results of Gauss, and the methods of Weyl, Mordell and Vinogradov; the traditional applications of exponential sums to the distribution of fractional parts, the estimation of the Riemann zeta function; and the theory of congruences and Diophantine equations. Some new applications of exponential sums are also included. It is assumed that the reader has a knowledge of the fundamentals of mathematical analysis and of elementary number theory.
This book is designed as a text for a first-year graduate algebra course. The choice of topics is guided by the underlying theme of modules as a basic unifying concept in mathematics. Beginning with standard topics in groups and ring theory, the authors then develop basic module theory, culminating in the fundamental structure theorem for finitely generated modules over a principal ideal domain. They then treat canonical form theory in linear algebra as an application of this fundamental theorem. Module theory is also used in investigating bilinear, sesquilinear, and quadratic forms. The authors develop some multilinear algebra (Hom and tensor product) and the theory of semisimple rings and modules and apply these results in the final chapter to study group represetations by viewing a representation of a group G over a field F as an F(G)-module. The book emphasizes proofs with a maximum of insight and a minimum of computation in order to promote understanding. However, extensive material on computation (for example, computation of canonical forms) is provided.
During the last fifty years, Gopinath Kallianpur has made extensive and significant contributions to diverse areas of probability and statistics, including stochastic finance, Fisher consistent estimation, non-linear prediction and filtering problems, zero-one laws for Gaussian processes and reproducing kernel Hilbert space theory, and stochastic differential equations in infinite dimensions. To honor Kallianpur's pioneering work and scholarly achievements, a number of leading experts have written research articles highlighting progress and new directions of research in these and related areas. This commemorative volume, dedicated to Kallianpur on the occasion of his seventy-fifth birthday, will pay tribute to his multi-faceted achievements and to the deep insight and inspiration he has so graciously offered his students and colleagues throughout his career. Contributors to the volume: S. Aida, N. Asai, K. B. Athreya, R. N. Bhattacharya, A. Budhiraja, P. S. Chakraborty, P. Del Moral, R. Elliott, L. Gawarecki, D. Goswami, Y. Hu, J. Jacod, G. W. Johnson, L. Johnson, T. Koski, N. V. Krylov, I. Kubo, H.-H. Kuo, T. G. Kurtz, H. J. Kushner, V. Mandrekar, B. Margolius, R. Mikulevicius, I. Mitoma, H. Nagai, Y. Ogura, K. R. Parthasarathy, V. Perez-Abreu, E. Platen, B. V. Rao, B. Rozovskii, I. Shigekawa, K. B. Sinha, P. Sundar, M. Tomisaki, M. Tsuchiya, C. Tudor, W. A. Woycynski, J. Xiong
Bob Blitzer has inspired thousands of students with his engaging approach to mathematics, making this beloved series the #1 in the market. Blitzer draws on his unique background in mathematics and behavioral science to present the full scope of mathematics with vivid applications in real-life situations. Students stay engaged because Blitzer often uses pop-culture and up-to-date references to connect math to students' lives, showing that their world is profoundly mathematical. With the Sixth Edition, Blitzer takes student engagement to a whole new level. In addition to the multitude of exciting updates to the text and MyMathLab(r) course, new application-based MathTalk videos allow students to think about and understand the mathematical world in a fun, yet practical way. Assessment exercises allow instructors to assign the videos and check for understanding of the mathematical concepts presented.
Thisseries is devoted to the publication of monographs, lecture resp. seminar notes, and other materials arising from programs of the OSU Mathemaical Research Institute. This includes proceedings of conferences or workshops held at the Institute, and other mathematical writings.
This book is an informal and readable introduction to higher algebra at the post-calculus level. The concepts of ring and field are introduced through study of the familiar examples of the integers and polynomials. The new examples and theory are built in a well-motivated fashion and made relevant by many applications - to cryptography, coding, integration, history of mathematics, and especially to elementary and computational number theory. The later chapters include expositions of Rabiin's probabilistic primality test, quadratic reciprocity, and the classification of finite fields. Over 900 exercises are found throughout the book.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
Man sollte weniger danach streben, die Grenzen der mathe- matischen Wissenschaften zu erweitern, als vielmehr danach, den bereits vorhandenen Stoff aus umfassenderen Gesichts- punkten zu betrachten - E. Study Today most mathematicians who know about Kronecker's theory of divisors know about it from having read Hermann Weyl's lectures on algebraic number theory [We], and regard it, as Weyl did, as an alternative to Dedekind's theory of ideals. Weyl's axiomatization of what he calls "Kronecker's" theory is built-as Dedekind's theory was built-around unique factor- ization. However, in presenting the theory in this way, Weyl overlooks one of Kronecker's most valuable ideas, namely, the idea that the objective of the theory is to define greatest com- mon divisors, not to achieve factorization into primes. The reason Kronecker gave greatest common divisors the primary role is simple: they are independent of the ambient field while factorization into primes is not. The very notion of primality depends on the field under consideration-a prime in one field may factor in a larger field-so if the theory is founded on factorization into primes, extension of the field entails a completely new theory. Greatest common divisors, on the other hand, can be defined in a manner that does not change at all when the field is extended (see 1.16). Only after he has laid the foundation of the theory of divisors does Kronecker consider factorization of divisors into divisors prime in some specified field.
The theory of Kac lagebras and their duality, elaborated independently in the seventies by Kac and Vainermann and by the authors of this book, has nowreached a state of maturity which justifies the publication of a comprehensive and authoritative account in bookform. Further, the topic of "quantum groups" has recently become very fashionable and attracted the attention of more and more mathematicians and theoretical physicists. However a good characterization of quantum groups among Hopf algebras in analogy to the characterization of Lie groups among locally compact groups is still missing. It is thus very valuable to develop the generaltheory as does this book, with emphasis on the analytical aspects of the subject instead of the purely algebraic ones. While in the Pontrjagin duality theory of locally compact abelian groups a perfect symmetry exists between a group and its dual, this is no longer true in the various duality theorems of Tannaka, Krein, Stinespring and others dealing with non-abelian locally compact groups. Kac (1961) and Takesaki (1972) formulated the objective of finding a good category of Hopf algebras, containing the category of locally compact groups and fulfilling a perfect duality. The category of Kac algebras developed in this book fully answers the original duality problem, while not yet sufficiently non-unimodular to include quantum groups. This self-contained account of thetheory will be of interest to all researchers working in quantum groups, particularly those interested in the approach by Lie groups and Lie algebras or by non-commutative geometry, and more generally also to those working in C* algebras or theoretical physics.
The aim of this text is to provide a concise treatment of some topics from group theory and representation theory for a one term course. It focuses on the non-commutative side of the field emphasizing the general linear group as the most important group and example. The book should enable graduate students from every mathematical field, as well as strong undergraduates with an interest in algebra, to solidify their knowledge of group theory. The reader should have a familiarity with groups, rings and fields, along with a solid knowledge of linear algebra. Close to 200 exercises of varying difficulty serve both to reinforce the main concept of the text and to expose the reader to additional topics.
The chapters in this contributed volume explore new results and existing problems in algebra, analysis, and related topics. This broad coverage will help generate new ideas to solve various challenges that face researchers in pure mathematics. Specific topics covered include maximal rotational hypersurfaces, k-Horadam sequences, quantum dynamical semigroups, and more. Additionally, several applications of algebraic number theory and analysis are presented. Algebra, Analysis, and Associated Topics will appeal to researchers, graduate students, and engineers interested in learning more about the impact pure mathematics has on various fields.
This second volume deals with the relative homological algebra of complexes of modules and their applications. It is a concrete and easy introduction to the kind of homological algebra which has been developed in the last 50 years. The book serves as a bridge between the traditional texts on homological algebra and more advanced topics such as triangulated and derived categories or model category structures. It addresses to readers who have had a course in classical homological algebra, as well as to researchers.
For more than five decades Bertram Kostant has been one of the major architects of modern Lie theory. Virtually all his papers are pioneering with deep consequences, many giving rise to whole new fields of activities. His interests span a tremendous range of Lie theory, from differential geometry to representation theory, abstract algebra, and mathematical physics. It is striking to note that Lie theory (and symmetry in general) now occupies an ever increasing larger role in mathematics than it did in the fifties. Now in the sixth decade of his career, he continues to produce results of astonishing beauty and significance for which he is invited to lecture all over the world. This is the fourth volume (1985-1995) of a five-volume set of Bertram Kostant's collected papers. A distinguished feature of this fourth volume is Kostant's commentaries and summaries of his papers in his own words.
The concept of derivatives of non-integer order, known as fractional derivatives, first appeared in the letter between L'Hopital and Leibniz in which the question of a half-order derivative was posed. Since then, many formulations of fractional derivatives have appeared. Recently, a new definition of fractional derivative, called the "fractional conformable derivative," has been introduced. This new fractional derivative is compatible with the classical derivative and it has attracted attention in areas as diverse as mechanics, electronics, and anomalous diffusion. Conformable Dynamic Equations on Time Scales is devoted to the qualitative theory of conformable dynamic equations on time scales. This book summarizes the most recent contributions in this area, and vastly expands on them to conceive of a comprehensive theory developed exclusively for this book. Except for a few sections in Chapter 1, the results here are presented for the first time. As a result, the book is intended for researchers who work on dynamic calculus on time scales and its applications. Features Can be used as a textbook at the graduate level as well as a reference book for several disciplines Suitable for an audience of specialists such as mathematicians, physicists, engineers, and biologists Contains a new definition of fractional derivative About the Authors Douglas R. Anderson is professor and chair of the mathematics department at Concordia College, Moorhead. His research areas of interest include dynamic equations on time scales and Ulam-type stability of difference and dynamic equations. He is also active in investigating the existence of solutions for boundary value problems. Svetlin G. Georgiev is currently professor at Sorbonne University, Paris, France and works in various areas of mathematics. He currently focuses on harmonic analysis, partial differential equations, ordinary differential equations, Clifford and quaternion analysis, dynamic calculus on time scales, and integral equations.
Krichever and Novikov introduced certain classes of infinite dimensional Lie algebras to extend the Virasoro algebra and its related algebras to Riemann surfaces of higher genus. The author of this book generalized and extended them to a more general setting needed by the applications. Examples of applications are Conformal Field Theory, Wess-Zumino-Novikov-Witten models, moduli space problems, integrable systems, Lax operator algebras, and deformation theory of Lie algebra. Furthermore they constitute an important class of infinite dimensional Lie algebras which due to their geometric origin are still manageable. This book gives an introduction for the newcomer to this exciting field of ongoing research in mathematics and will be a valuable source of reference for the experienced researcher. Beside the basic constructions and results also applications are presented.
One of the most remarkable and beautiful theorems in coding theory is Gleason's 1970 theorem about the weight enumerators of self-dual codes and their connections with invariant theory, which has inspired hundreds of papers about generalizations and applications of this theorem to different types of codes. This self-contained book develops a new theory which is powerful enough to include all the earlier generalizations.
Kaye Stacey' Helen Chick' and Margaret Kendal The University of Melbourne' Australia Abstract: This section reports on the organisation' procedures' and publications of the ICMI Study' The Future of the Teaching and Learning of Algebra. Key words: Study Conference' organisation' procedures' publications The International Commission on Mathematical Instruction (ICMI) has' since the 1980s' conducted a series of studies into topics of particular significance to the theory and practice of contemporary mathematics education. Each ICMI Study involves an international seminar' the "Study Conference"' and culminates in a published volume intended to promote and assist discussion and action at the international' national' regional' and institutional levels. The ICMI Study running from 2000 to 2004 was on The Future of the Teaching and Learning of Algebra' and its Study Conference was held at The University of Melbourne' Australia fromDecember to 2001. It was the first study held in the Southern Hemisphere. There are several reasons why the future of the teaching and learning of algebra was a timely focus at the beginning of the twenty first century. The strong research base developed over recent decades enabled us to take stock of what has been achieved and also to look forward to what should be done and what might be achieved in the future. In addition' trends evident over recent years have intensified. Those particularly affecting school mathematics are the "massification" of education-continuing in some countries whilst beginning in others-and the advance of technology.
In the summer of 1991 the Department of Mathematics and Statistics of the Universite de Montreal was fortunate to host the NATO Advanced Study Institute "Algebras and Orders" as its 30th Seminaire de mathematiques superieures (SMS), a summer school with a long tradition and well-established reputation. This book contains the contributions of the invited speakers. Universal algebra- which established itself only in the 1930's- grew from traditional algebra (e.g., groups, modules, rings and lattices) and logic (e.g., propositional calculus, model theory and the theory of relations). It started by extending results from these fields but by now it is a well-established and dynamic discipline in its own right. One of the objectives of the ASI was to cover a broad spectrum of topics in this field, and to put in evidence the natural links to, and interactions with, boolean algebra, lattice theory, topology, graphs, relations, automata, theoretical computer science and (partial) orders. The theory of orders is a relatively young and vigorous discipline sharing certain topics as well as many researchers and meetings with universal algebra and lattice theory. W. Taylor surveyed the abstract clone theory which formalizes the process of compos ing operations (i.e., the formation of term operations) of an algebra as a special category with countably many objects, and leading naturally to the interpretation and equivalence of varieties."
This book is a basic reference in the modern theory of holomorphic foliations, presenting the interplay between various aspects of the theory and utilizing methods from algebraic and complex geometry along with techniques from complex dynamics and several complex variables. The result is a solid introduction to the theory of foliations, covering basic concepts through modern results on the structure of foliations on complex projective spaces.
A series of three symposia took place on the topic of trace formulas, each with an accompanying proceedings volume. The present volume is the third and final in this series and focuses on relative trace formulas in relation to special values of L-functions, integral representations, arithmetic cycles, theta correspondence and branching laws. The first volume focused on Arthur's trace formula, and the second volume focused on methods from algebraic geometry and representation theory. The three proceedings volumes have provided a snapshot of some of the current research, in the hope of stimulating further research on these topics. The collegial format of the symposia allowed a homogeneous set of experts to isolate key difficulties going forward and to collectively assess the feasibility of diverse approaches. |
![]() ![]() You may like...
Developing Linear Algebra Codes on…
Sandra Catalan Pallares, Pedro Valero-Lara, …
Hardcover
R5,886
Discovery Miles 58 860
Differential Equations with Linear…
Matthew R. Boelkins, Jack L. Goldberg, …
Hardcover
R2,968
Discovery Miles 29 680
|